Исследование анизотропии плазменного резонанса в твёрдых растворах теллурида висмута и теллурида сурымы в инфракрасной области спектра при температурах от 78 до 293 К\(^1\)

Исследованы спектры отражения поляризованного инфракрасного излучения от кристаллов твёрдых растворов \((\text{Bi}_{2-x}\text{Sb}_x)\text{Te}_3 (0 < x < 1)\) в диапазоне температур от 78 до 293 К в области возбуждения плазменных колебаний свободных носителей заряда. Обнаружено, что при увеличении количества \text{Sb}_2\text{Te}_3 в составе твёрдого раствора от 0 до 50 процентов, величина анизотропии плазменных частот и магнитной восприимчивости изменяется незначительно. Это свидетельствует о том, что в указанных кристаллах при температуре 293 К, вблизи уровня химического потенциала не происходит существенных изменений в составе групп свободных носителей заряда. Установлено, что для описания наблюдающейся анизотропии плазменных частот необходимо учитывать влияние тяжёлых дырок валентной зоны. Об этом же свидетельствуют в результаты исследования температурной зависимости спектров плазменного отражения, обнаруживающие закономерности, аналогичные аномальным температурным изменениям коэффициента Холла. Показано, что для описания уменьшения плазменных частот, наблюдаемого с ростом температуры, недостаточно увеличения эффективных масс носителей заряда в соответствии с выражением \(n^2 \sim T^{0.17}\), которое было получено при интерпретации результатов исследования температурной зависимости ряда кинетических коэффициентов. Эмпирическое правило \(\alpha = \text{const}\) было использовано для оценки скорости уменьшения ширины термической запрещённой зоны \(de_J/dT = -1,6 \cdot 10^{-7} \text{ эВ/град}\) в кристалле, содержащем 25 процентов \text{Sb}_2\text{Te}_3.

Ключевые слова: спектр отражения, анизотропия коэффициента отражения, зональная структура, теллурид висмута, теллурид сурымы.

Artyom Kausarovich Gilfanov,
Research Associate,
Zabaikalsky State Humanitarian Pedagogical University
named after N. G. Chernyshevsky (Chita, Russia), e-mail: artem. gilfanov@mail.ru

Alekssey Andreevich Kalashnikov
Assistant Professor,
Zabaikalsky Institute of Railway Transport (Chita, Russia), e-mail: zeleny.83@mail.ru

Nikolay Petrovich Stepanov
Doctor of Physics and Mathematics,
Zabaikalsky State Humanitarian Pedagogical University
named after N. G. Chernyshevsky (Chita, Russia), e-mail: np-stepanov@mail.ru

Studying Anisotropy of Plasma Resonance in Solid Solutions of Bismuth Telluride and Antimony Telluride in the Infrared Spectrum at Temperatures Ranging from 78 to 293 K

The article investigates reflection spectra of polarized infrared radiation from \((\text{Bi}_{2-x}\text{Sb}_x)\text{Te}_3 (0 < x < 1)\) solid solution crystals in the temperature range from 78 to 293 K.

\(^1\)Работа выполнена в рамках реализации АВШП "Развитие научного потенциала высшей школы."
Введение

Твёрдые растворы Bi₂Te₃–Sb₂Te₃ продолжают оставаться предметом многочисленных и разнообразных экспериментальных исследований, вследствие их большой практической значимости для термоэлектрического материаловедения. Вместе с тем, остаётся актуальной задача проведения дополнительных исследований характеристик зонной структуры и её перестройки при изменении состава твёрдого раствора Bi₂Te₃–Sb₂Te₃ и температуры. Решение указанной задачи предполагает использование разнообразных подходов. Одним из них является исследование анизотропии физических свойств, например, анизотропии плазменного отражения и магнитной восприимчивости. Действительно, сложная решётка, в которой кристаллизуются твёрдые растворы Bi₂Te₃–Sb₂Te₃, приводит к значительной анизотропии физических свойств, учёт и исследование которой позволяют судить об изменениях, происходящих в валентной зоне или зоне проводимости в зависимости от изменения состава или температуры. Исследованию анизотропии гальваномагнитных свойств Bi₂Te₃–Sb₂Te₃ посвящены многочисленные работы, обзор которых приведён в монографии [1]. Результаты исследования анизотропии плазменных частот ωₜ в рассматриваемых материалах отражены в работах [13; 14; 16]. Анализ указанных работ позволяет утверждать, что анизотропия плазменного отражения кристаллов твёрдых растворов Bi₂Te₃–Sb₂Te₃, и особенно её зависимость от температуры, исследована недостаточно подробно. Результаты исследования анизотропии магнитной восприимчивости χ кристаллов Bi₂Te₃–Sb₂Te₃, приведённые в работах [8; 12; 15], имеют противоречивый характер, что актуализирует задачу исследования χ с привлечением современных технических средств. Необходимо отметить, что именно исследование анизотропии плазменных частот и магнитной восприимчивости, которые, как известно, напрямую не зависит от интенсивности рассеяния носителей заряда, выполненное на одних и тех же кристаллах, может дать дополнительную информацию о важнейших характеристиках материала.

В связи с вышеизложенным, целью настоящей работы явилось исследование анизотропии плазменных частот и магнитной восприимчивости кристаллов Bi₂Te₃–Sb₂Te₃ в зависимости от соотношения компонентов в составе твёрдого раствора и температуры, а также обнаружение корреляции в поведении оптических, магнитных и гальваномагнитных характеристик этих материалов.

Кристаллы и образцы

Исследовались моноокристаллы твёрдых растворов системы Bi₂Te₃–Sb₂Te₃, содержащие 0, 10, 25, 40, 50 мол. % Sb₂Te₃, выращенные методом Чохральского в институте металлургии и материаловедения им. А. А. Байкова РАН. В качестве исходных материалов использовались Te, Sb, Bi, содержащие 99.9999 массовых % основного вещества. Химический состав выращенных моноокристаллов определялся методом атомно-адсорбционной спектрометрии. Качество моноокристаллов контролировалось методом рентгеновской дифракционной топографии.

Исследованные моноокристаллы имели толщину 15–20 мм, хорошо выраженные плоскости спайности и массу 200–300 г. Образцы для оптических и магнитных измерений вырезались из слитка при
помощи электроискровой резки, и затем очищались травлением. Характерные размеры образца для оптических измерений 10 × 8 × 6 мм и для магнитных измерений 2 × 2 × 4 мм

Методика и техника эксперимента

Регистрировались спектры отражения неполяризованного и поляризованного излучения как от свежеприготовленного скола кристалла по плоскости спайности, обладающей зеркальным блеском, так и от полированной поверхности, содержащей оптическую ось кристалла C₃. Угол падения излучения на образец не превышал 8 градусов.

Измерения R(ν) при температуре T = 293 K проводились на фурье-спектрометрах PERKIN ELMER 1720X и SHIMADZU FTIR-8400S в диапазоне 400–4000 cm⁻¹ с разрешением 1 cm⁻¹. Низкотемпературные измерения от 78 до 293 K были выполнены на фурье-спектрометре BRUKER IFS-113V в диапазоне 50–600 cm⁻¹ с разрешением 1 cm⁻¹.

В данной работе приведены и результаты исследований магнитной восприимчивости при температуре 293 K, которые проводились в магнитных полях до 30 к Э на сверхпроводящем квантовом интерферометре Джозефсона (SQUID-магнитометре) при двух орIENTATION вектора напряжённости магнитного поля H по отношению к C₃ (H || C₃ и H ⊥ C₃).

Экспериментальные результаты

Результаты оптических измерений представлены на рис. 1, на котором приведены спектры отражения двух образцов (Bi₂₋ₓSbₓ)Te₃ с x = 0 и 0.8, имеющие вид, характерный для плазменного резонанса свободных носителей заряда. Как видно из рис. 1, в спектрах наблюдается минимум отражения, положения и глубина которого зависят от процентного содержания Sb₂Te₃ в твёрдом растворе Bi₂Te₃–Sb₂Te₃, температуры, а также от взаимной ориентации вектора напряжённости E падающего электромагнитного излучения и оптической оси кристалла C₃.

![Рис. 1. Спектры отражения поляризованного излучения образцов: 1₁, 1|| − Bi₂Te₃, T = 293 K, 2₁, 2|| − Bi₁.₂Sb₀.₈Te₃, T = 293 K; 3₁, 3|| − Bi₁.₂Sb₀.₈Te₃, T = 78 K. Индексы || и ⊥ означают, что E || C₃ и E ⊥ C₃ соответственно.](image)

Наблюдаемое изменение положения плазменных минимумов от состава твёрдого раствора обусловлено изменением концентрации свободных носителей заряда p (дырок), увеличивающейся с ростом количества Sb₂Te₃. Анизотропия плазменного отражения связана с анизотропией эффективных масс носителей заряда и диэлектрической проницаемости [14]. Все полученные спектры обрабатывались при помощи соотношения Крамерса-Кронига, позволяющих из спектра коэффициента отражения рассчитать спектральные зависимости действительной ε₁ и мнимой ε₂ частей функции диэлектрической проницаемости, а также функции энергетических потерь −Im ε⁻¹ = ε₂(ε₁² + ε₂²)⁻¹, характеризующей скорость проникновения электрона в системе. Общая картина изменения анизотропии плазменных частот, определяемых по максимуму функции энергетических потерь, в соответствии с методикой, описанной в работе [5], в зависимости от состава твёрдого раствора Bi₂Te₃–Sb₂Te₃, представлена на рис. 2.
На этом же рисунке приведены и результаты исследования анизотропии плазменных частот и магнитной восприимчивости, полученные при температуре 293 K. Как видно из рисунка, наблюдается незначительное изменение анизотропии ω_p и χ при увеличении количества Sb2Te3 в составе твёрдого раствора. Обращает на себя внимание тот факт, что $\omega_{p||} > \omega_{p\perp}$, в то время как $|\chi_{||}| > |\chi_{\perp}|$. Это обстоятельство связано с тем, что величина магнитной восприимчивости свободных носителей заряда зависит от соотношения параметрического вклада Паули и доминирующего в исследуемых материалах дипамагнитного вклада Ландау-Пайерса.

На рис. 3 приведена динамика изменения спектров плазменного отражения, полученных от схода образца Bi1.5Sb0.5Te3 по плоскости спайности $E \perp C_3$, в зависимости от температуры. Смещение плазменного минимума в низкочастотную область спектра, наблюдаемое при увеличении температуры, требует анализа, учитывающего температурное изменение поляризационного фона кристалла ε_∞, концентрации дырок p и эффективных масс носителей заряда m^*. Обращает на себя внимание динамика изменения величины коэффициента отражения в высокочастотной области спектра R_∞. Как видно из рис. 3, R_∞ моноотно увеличивается с ростом температуры, что свидетельствует об увеличении ε_∞, так как при изменении частоты $\omega \to \infty$ $R \to \left(\frac{\varepsilon_0^{0.5} - 1}{\varepsilon_0^{0.5} + 1}\right)^2$ [7].

Изменение величины плазменных частот и их анизотропии от температуры для кристалла Bi1.2Sb0.8Te3, характерное и для других образцов, исследованных в данной работе, приведено на рис. 4. Как видно из рисунка, наблюдается увеличение анизотропии плазменных частот с ростом температуры, что свидетельствует не только о количественных, но и качественных качественных изменениях в составе носителей заряда вблизи уровня химического потенциала с повышением темпе-
Анализ экспериментальных результатов

Как видно из рис. 1 и рис. 2, для всех исследованных кристаллов \(\omega_{p,\text{min}} > \omega_{p||,\text{min}} \). В соответствии с выражением

\[
\omega_{p}^{2} = \frac{\varepsilon_{\infty}}{\varepsilon_{\infty} - \delta_{\infty}} \frac{P}{m^{*}}
\]

наблюдаемая анизотропия плазменных частот обусловлена анизотропией высокочастотной диэлектрической проницаемости \(\varepsilon_{\infty} \) и эффективной массы носителей заряда \(m^{*} \). Для выделения вклада в анизотропию от \(m^{*} \) целесообразно рассмотреть отношение

\[
A_{m} = \frac{\omega_{p 2}^{2} \varepsilon_{\infty} \|}{\omega_{p 1}^{2} \varepsilon_{\infty} ||}.
\]

Учитывая анизотропию высокочастотной диэлектрической проницаемости, которая в исследованных кристаллах \(\varepsilon_{\infty} \| / \varepsilon_{\infty} || \approx 1,6 \), а также то, что при температуре 293 К \(\omega_{p 1}^{2} / \omega_{p 2}^{2} \approx 1,82 \), получим \(A_{m} = m_{||}^{*} / m_{\perp}^{*} \approx 2,91 \), и таким образом \(m_{\perp}^{*} < m_{||}^{*} \).

Рассмотрим, насколько это соответствует представлениям о кристаллической структуре рассматриваемых материалов. Как уже было отмечено, кристаллы Bi\(_{2}\)Te\(_{3}\) и твёрдых растворов Bi\(_{2}\)Te\(_{3}\)–Sb\(_{2}\)Te\(_{3}\) обладают симметрией \(R\overline{3}m \). Элементами симметрии таких кристаллов являются центр инверсии, ось третьего порядка, проходящие через неё три плоскости отражения и три оси второго порядка [1]. Рассматриваемая симметрия \(R\overline{3}m \) приводит к многодольнику типу зоны структуры. Для объяснения комплекса гальваномагнитных коэффициентов Bi\(_{2}\)Te\(_{3}\) с ярко выраженной и значительной анизотропией эффекта Холла, наблюдающейся в \(n \) и \(p \) типе Bi\(_{2}\)Te\(_{3}\), Дравболом и Вольфом рассматривался вариант зоны структуры, содержащей 6 эллипсоидов, центрированных на осях плоскостей симметрии, причём одна из осей эллипсоида, совпадает по направлению с осью второго порядка [11]. Для шестиграничной модели Дравбола-Вольфа операции симметрии, связывающие эллипсоиды постоянной энергии, приводят к зависимости энергии от волнового вектора в системе координат, связанной с осами кристалла, имеющей следующий вид (после учёта равенства нулю диагональных коэффициентов \(\alpha_{12} = \alpha_{23} = 0 \) для эллипсоида, центрированного на плоскости отражения \(xz \))

\[
\varepsilon(k) = \hbar^{2} / 2m_{0} (\alpha_{22} k_{x}^{2} + \alpha_{33} k_{y}^{2} + 2\alpha_{13} k_{x} k_{y}).
\]

Исходя из этого выражения, для шестиграничной модели Дравбола-Вольфа эффективная масса воспримчивости для измерений вдоль оси \(C_{3} m_{||}^{*} \), и перпендикулярно ей \(m_{\perp}^{*} \), определяется следующим образом:

\[
\frac{1}{m_{||}^{*}} = \frac{\alpha_{33}}{m_{0}}, \quad \frac{1}{m_{\perp}^{*}} = \frac{\alpha_{11} + \alpha_{22}}{2m_{0}},
\]
где \(a_{11} = c^2 a_1 + s^2 a_3, a_{22} = a_2, a_{33} = s^2 a_1 + c^2 a_3, c = \cos \nu, s = \sin \nu, \) а \(\nu \) - угол наклона эллипсоида, центрированного на плоскости отражения \(xz, \) к оси кристалла \(y. \) Ось \(C_3 \) направлена вдоль \(z. \) В \(p-Bi_2Te_3 \) угол \(\nu \approx 24^\circ. \) Подстановка компонент тензора эффективных масс для \(p-Bi_2Te_3 \) в выражение

\[
\frac{1}{a_{11}} = \frac{m_0}{m_1} = 0,43, \quad \frac{1}{a_{22}} = \frac{m_0}{m_2} = 0,048, \quad \frac{1}{a_{33}} = \frac{m_0}{m_3} = 0,19
\]

позволяет получить \(m_1^* = 0,09m_0, m_2^* = 0,22m_0. \) Откуда \(A_{m_{\text{theor}}} = m_1^*/m_1^* \approx 2,44, \) т. е. \(m_2^* < m_1^* \), что согласуется с результатами исследования ангиозотропии плазменного отражения. Таким образом, используя параметры валентной зоны галлиурэнда висмута даёт возможность на качественном уровне объяснить наблюдающуюся ангиозотропию плазменного отражения. Отметим, что значение \(A_{m_{\text{theor}}} = m_1^*/m_1^* \approx 2,44 \) отличается от \(A_{m_{\text{exp}}} = m_1^*/m_1^* \approx 2,91, \) полученного из результатов исследования плазменного отражения. Это обстоятельство указывает на возможное влияние другой группы носителей заряда, также находящихся в валентной зоне.

О существовании подзон тяжёлых дырок в глубине валентной зоны свидетельствуют и данные температурных измерений плазменного отражения. Так, на рис. 1 и рис. 3 наблюдается смещение плазменных минимумов в низкочастотную область спектра при увеличении температуры. Моделирование спектров отражения, представленных на рис. 3, в рамках классической электронной теории позволяет получить значения \(\omega_0, \varepsilon_\infty \) и оптических времён релаксации \(\tau_{opt}, \) приведённые в таблице, из которой видно динамика изменения перечисленных параметров. Учитывая изменение значений \(\omega_0, \varepsilon_\infty, \) с ростом температуры от 85 К до 293 К, в соответствии с выражением (1), получим, что соотношение \(p/m^* \) уменьшается в 1,47 раза.

Аналогичная картина уменьшения плазменных частот с температурой наблюдается и в кристинах висмут-сурьмы, легированных акцепторной примесью олова [6], в которых рост температуры приводит к увеличению ширины запрещённой зоны в \(L-\)точке зоны Бриллюэна, и, как следствие, к уменьшению концентрации лёгких дырок. Это, вероятнее всего, и является доминирующей причиной уменьшения соотношения \(p/m^*. \) Однако, в кристаллах твёрдых растворов \(Bi_2Te_3-Sb_2Te_3 \) от лёгкого к кристаллам висмут-сурьмы, рост температуры сопровождается уменьшением ширины термической запрещённой зоны [1]. Об этом свидетельствуют результаты наших исследований. Так, на рис. 3 видно, что \(\varepsilon_\infty \) увеличивается с ростом температуры. Это даёт возможность использовать эмпирическое соотношение Мокса

\[
\varepsilon_\infty^2 E_q = \text{const},
\]

хорошо выполняющееся для типичных полупроводников, найти скорость изменения \(E_q \) по температурному изменению \(\varepsilon_\infty \) [2]. Рассчитывается, что в соответствии с (6) наблюдается уменьшение \(E_q \) от 125 мэВ при \(T = 85 \) К до 90 мэВ при \(T = 293 \) К, откуда следует, что \(dE_q/dT = -1,6 \cdot 10^{-4} \) эВ/град, что в четыре раза больше значения \(dE_{opt}/dT = -0,4 \cdot 10^{-4} \) эВ/град (в следующих работах, обзор которых приведён в [1]), но совпадает со значением \(dE_q/dT, \) определённым в работе [10]. В любом случае уменьшение термической ширины запрещённой зоны с ростом температуры не способствует уменьшению концентрации носителей заряда, а, следовательно, возможность уменьшения плазменных частот за счёт снижения концентрации носителей заряда в рамках одноэлектронной модели необходимо исключить. В связи с этим, полагая, что в рассматриваемом образце \(Bi_2Sb_3BiTe_3 \) концентрация дырок \(p \) при увеличении температуры не изменяется, можно полагать, что уменьшение соотношения \(p/m^* \) в 1,47 раза всего обусловлено увеличением эффективных масс носителей заряда. Причём, 1,47 - это минимальное значение, характеризующее изменение \(m^* \), и даже небольшой рост концентрации с температурой должен приводить к более быстрому увеличению \(m^* \).

В соответствии с рис. 2, при увеличении количества \(Sb_2Te_3 \) в составе твёрдого раствора до 50 процентов, величина ангиозотропии плазменных частот и магнитной восприимчивости изменяется слабо. Это свидетельствует о том, что при температуре 293 К в исследованных в данной работе кристаллах \((Bi_{2-x}Sb_x)Te_3 \) \(0 < x < 1 \), вблизи уровня химического потенциала не происходит существенных изменений в составе групп свободных носителей заряда. Возможно, это связано с тем, что подзона тяжёлых дырок при увеличении количества \(Sb_2Te_3 \) в составе твёрдого раствора либо не изменяет свое положение, либо медленно смешается в глубину валентной зоны. Действительно, результаты предшествующих исследований свидетельствуют о том, что в \(Bi_2Te_3 \) потолок подзоны тяжёлых дырок расположен примерно на 20–30 мэВ ниже потолка подзоны лёгких дырок [3], а в \(Sb_2Te_3 \) указанный энергетический зазор составляет уже 230 мэВ [9].
Заключение

В заключении необходимо отметить, что полученные в ходе исследования анизотропию плазменного отражения и магнитной восприимчивости кристаллов твёрдых растворов (Bi₂₋ₓSbₓ)Te₃ (0 < x < 1) результаты хорошо согласуются между собой и результатами гальваниомагнитных исследований. Из этого следует, что оптические и магнитные свойства рассматриваемых материалов, а также их анизотропия, во многом обусловлены влиянием свободных носителей заряда. Это обстоятельство открывает возможность исследования параметров зоны структуры и энергетического спектра носителей заряда твёрдых растворов Bi₂Te₃-Sb₂Te₃ в широком диапазоне температур и составов, с использованием современных высокочувствительных средств фурьеспектроскопии и SQUID магнетометрии, обладающих несомненным преимуществом, заключающимся в отсутствии прямой зависимости плазменных частот и магнитной восприимчивости от влияния механизмов рассеяния носителей заряда, что значительно упрощает задачу интерпретации экспериментальных результатов.

Список литературы

3. Сиолуб В. В., Галицкая А. Я., Парфеньев Р. В. ФТП. 14, 915 (1972)
5. Степанов Н. П., Грабов В. М. Оптические эффекты, обусловленные совпадением энергии плазменных колебаний и межзонного перехода в легированных акцепторной примесью кристаллах висмута // Оптика и спектроскопия. 2002. Т. 92. № 5. С. 794–798
8. Itterbeek A. Van, Deynse N. Van, Herinckx C. Measurements of the magnetic anisotropy of single crystals of Bi₂Te₂, Sb₂Te₃ and compounds of them between room temperature and 1.3 K // Physica. 1966. № 32. P. 2123–2128
10. Dennis J. H. Anisotropy of thermoelectric power in bismuth telluride. Laboratory of electronics. Massachusetts Institute of Technology: 1961. 52 p

Статья поступила в редакцию 25.02.2012 г.