Article
Article name A Numerical Study of the Propagation of a Shock Wave of Extremely Low Intensity from a Pure Gas into an Electrically Charged Dusty Medium
Authors Akhunov A.A. Graduate Student, Ahunov.AdeWyandex.ru
Tukmakov D.A. Candidate of Physical and Mathematical Sciences, tukmakovDA@imm.knc.ru
Bibliographic description Akhunov A. A., Tukmakova N. A., Tukmakov D. A. A Numerical Study of the Propagation of a Shock Wave of Extremely Low Intensity from a Pure Gas into an Electrically Charged Dusty Medium / / Scholarly Notes of Transbaikal State University. 2020. Vol. 15, No. 3. PP. 6-18. DOI: 10.21209/2658-7114-2020-15-3-6-18.
Section PROBLEMS OF MATHEMATICAL PHYSICS. ANALYTICAL METHODS
UDK 51-72:533:537
DOI 10.21209/2658-7114-2020-15-3-6-18
Article type
Annotation In this paper, authors consider the propagation of a shock wave of extremely low intensity from a pure gas to a heterogeneous mixture consisting of solid particles suspended in a gas and having an electric charge. The mathematical model used takes into account the speed and thermal interaction of the carrier and dispersed components of the mixture. The force interaction of particles and gas included the Stokes force, the strength of the attached masses, as well as the dynamic force of Archimedes. The carrier medium was described as a viscous compressible heat-conducting gas. The equations of the mathematical model were solved by the explicit finitedifference method of the second order of accuracy, using the non-linear correction of the grid function. The system of equations of the mathematical model was supplemented by boundary and initial conditions for the desired functions. As a result of numerical simulation, it was found that in an electrically charged gas suspension there is a difference in pressure and gas velocity, the velocity of the dispersed component, from similar values in a gas suspension with an electrically neutral dispersed component. The revealed differences in the parameters of the carrier medium during the propagation of a shock wave from a pure gas into a neutral and electrically charged dusty medium arise due to the force interaction of the gas and solid components of a heterogeneous mixture, the solid component of which is affected by the Coulomb force.
Key words multiphase media, interfacial interaction, shock waves, Navier-Stokes equation, internal electric field, electrohydrodynamics
Article information
References 1. Krylov V. I., Bobkov V. V., Monastyrnvj P. I. Vychislitel’nye metodv. M.: Nauka, 1977. T. 2. 401 s. 2. Kutushev A. G. Matematicheskoe modelirovanie volnovvh processov v aerodispersnvh i poroshkoobraznvh sredah. SPb.: Nedra, 2003. 284 s. 3. Landau L. D., Lifshic E. V. Teoreticheskava fizika. Gidrodinamika. M.: Nauka, 1986. 736 s. 4. Lojcvanskij L. G. Mekhanika zhidkosti i gaza. M.: Drofa, 2003. 784 c. 5. Muzafarov I. F., Utvuzhnikov S. V. Primenenie kompaktnvh raznostnvh skhem к issledovanivu nestacionarnvh techenij szhimaemogo gaza / / Matematicheskoe modelirovanie. 1993. T. 5, № 3. S. 74-83. 6. Nigmatulin R. I. Osnovv mekhaniki geterogennvh sred: monografiva. M.: Nauka, 1978. 336 s. 7. Panvushkin V. V., Pashin M. M. Izmerenie zarvada poroshka, nanosimogo raspylitelvami s vneshnej zarvadkoj / / Lakokrasochnve materialv i ih primenenie. 1984. № 2. S. 25^27. 8. Sal’yanov F. A. Osnovv fiziki nizkotemperaturnoj plazmv, plazmennvh apparatov i tekhnologij. M.: Nauka, 1997. 240 c. 9. Tukmakov D. A. CHislennoe modelirovanie kolebanij elektricheski zarvazhennoj geterogennoj sredv, obuslovlennvh mezhkomponentnvm vzaimodejstviem / / Izvestiva vvsshih uchebnvh zavedenij. Prikladnava nelinejnava dinamika. 2019. T. 27, № 3. S. 73-85. 10. Tukmakov A. L. CHislennoe modelirovanie akusticheskih techenij pri rezonansnvh kolebanivah gaza v zakrvtoj trube / / Izvestiva vvsshih uchebnvh zavedenij. Aviacionnava tekhnika. 2006. № 4. S. 33-36. 11. Fedorov A. V., Fomin V. M., НтеГ T. A. Volnovve processv v gazovzvesvah chastic metallov. Novosibirsk, 2015. 301 s. 12. Fletcher K. Vvchisliternye metodv v dinamike zhidkosti: v 2 t. T. 2. M.: Mir, 1991. 552 s. 13. Dikalvuk A. S., Surzhikov S. T. Numerical simulation of rarefied dusty plasma in a normal glow discharge// High Temperature. 2012. Vol. 50, No. 5. P. 571-578. 14. Glazunov A. A., Dyachenko N. N., Dyachenko L. I. Numerical investigation of the flow of ultradisperse particles of the aluminum oxide in the solid-fuel rocket engine nozzle / / Thermophvsics and Aeromechanics. 2013. Vol. 20, No. 1. P. 79-86. 15. Gubaidullin D. A., Tukmakov D. A. Numerical investigation of the evolution of a shock wave in a gas suspension with consideration for the nonuniform distribution of the particles / / Mathematical Models and Computer Simulations. 2015. Vol. 7, No. 3. P. 2 10 253. 16. Sadin D. V. TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhvperbolic nonconservative tvpe//Computational Mathematics and Mathematical Physics. 2016. Vol. 56, No. 12. P. 2068-2078. 17. Nigmatulin R. I., Gubaidullin D. A., Tukmakov D. A. Shock Wave Dispersion of Gas- Particle Mixtures// Dokladv Physics. 2016. Vol. 61, No. 2. P. 70-73. 18. Tadaa Y., Yoshioka S., Takimoto A., Havashi Y. Heat transfer enhancement in a gas-solid suspension flow by applying electric field / / International Journal of Heat and Mass Transfer. 2016. Vol. 93. P. 778-787. 19. Tukmakov A. L., Tukmakov D. A. Generation of Acoustic Disturbances by a Moving Charged Gas Suspension / / Journal of Engineering Physics and Thermophvsics. 2018. Vol. 91. Is. 5, P. 1141—1147. 20. Zhuoqing A., Jesse Z. Correlating the apparent viscosity with gas-solid suspension flow in straight pipelines//Powder Technology. 2019. Vol. 345. P. 346-351. 21. Zinchenko S. P., Tolmachev G. N. Accumulation of products of ferroelectric target sputtering in the plasma of an rf glow discharge / /Plasma Physics Reports. 2013. Vol. 39, No. 13. P. 1096-1098.
Full articleA Numerical Study of the Propagation of a Shock Wave of Extremely Low Intensity from a Pure Gas into an Electrically Charged Dusty Medium