Annotation |
Studies of a new modification of crystalline ice - ice 0, which can be formed only from
supercooled water, have been performed. To do this, experiments were conducted with various
porous media, artificial and natural, containing water in the pores of nanometer sizes. The
dielectric parameters of the media, as well as some of their electrical properties, were measured.
These include reflection coefficients of the radiation of moistened silicates at a frequency of
12, 4 GHz and absorption in pine branches and needles at a frequency of 5,3 GHz, dielectric
loss tangent of silicate sorbents at frequencies from hundreds of hertz to hundreds of kHz,
intrinsic electrical fluctuations in a frequency band of 1 Hz... 100 Hz and transmitting visible
electromagnetic radiation through samples of transparent dielectrics with a thin layer of ice
on their surface. The temperature range for different experiments reached values from +20 to
-170 °C. An increase in the intensity of absorbed (scattered) radiation at a wavelength of 0, 52 gm
was detected. Near the temperatures -20 ... — 24 °C, sharp changes were found in the parameters
of moistened silicates and pine wood, which can be explained by the formation or destruction of
ferroelectric ice 0. Two possible reasons for this behavior of the parameters during ice formation
0 are stated. This is the appearance of a highly conductive layer at the contact of ferroelectric
ice with another dielectric, as well as the appearance of surface plasmons in this layer. |
References |
1. Bordonskij G. S., Gurulev A. A., Orlov A. O. Propuskanie elektromagnitnogo izlucheniva
vidimogo diapazona tonkim sloem l’da 0, kondensirovannogo na dielektricheskuyu podlozhku / /
Pis’ma v ZHETF. 2020. T. I l l , № 5. S. 311-315.
2. Bordonskij G. S., Gurulev A. A., Orlov A. O., Cvrenzhapov S. V. Variacii mikrovolnovvh
poter’ v vetkah sosnv pri otricatel’nyh temperaturah / / Sovremennve problemv distancionnogo
zondirovaniva Zemli iz kosmosa. 2018. T. 15, № 5. S. 120-129.
3. Bordonskij G. S., Orlov A. O. Issledovanie segnetoelektricheskih fazovvh perekhodov
vodv v nanoporistvh silikatah pri sovmestnvh elektricheskih shumovvh i kalorimetricheskih
izmerenivah / / Fizika tvvordogo tela. 2014. T. 56, vvp. 8. S. 1575-1582.
4. Bordonskij G. S., Orlov A. O. Priznaki vozniknoveniva l’da «0» v uvlazhnyonnvh
nanoporistvh sredah pri elektromagnitnvh izmerenivah / / Pis’ma v ZHETF. 2017. T. 105, № 7-8.
S. 483-488.
5. Boren K., Hafmen D. Pogloshchenie i rassevanie sveta malvmi chasticami. M.: Mir, 1986.
664 s.
6. Klimov V. V. Nanoplazmonika. M.: Fizmalit, 2009. 480 s.
7. Barsoukov E., Macdonald J. R. Impedance Spectroscopy: Theory, Experiment, and
Applications. New York: Wiley, 2005. 608 p.
8. Castrillon S. R.-V., Giovambattista N., Arsav I. A., Debenedetti P. G. Evolution from
surface-influenced to bulk-like dynamics in nanoscopicallv confined water / / J. of Phvs. Chem.
B. 2009. Vol. 113. P. 7973-7976.
9. Cervenv S., Mallamace F., Swenson J., Vogel M., Xu L. Confined Water as Model of
Supercooled Water / / Chem. Rev. 2016. Vol. 116, Is. 13. P. 7608-7625.
10. Chaplin M. Ice phases. URL: http://wwwl.lsbu.ac.Uk/water/ice_phases.html#computer
(data obrashcheniva: 22.04.2020). Tekst: elektronnvj.
11. Colla E. V., Chao L. K., Weissman M. B. Barkhausen noise in a relaxor ferroelectric / /
Physical Review Letters. 2002. Vol. 88, Is. 1. P. 17601-1/4.
12. Fukazawa H., Hoshikawa A., Ishii Y., Chakoumakos В. C., Fernandez-Baca J. A.
Existence of Ferroelectric Ice in the Universe / / The Astrophvsical Journal. 2006. Vol. 652.
No. 1. P. L57-L60.
13. Jiang Q., Liang L.H., Zhao M. Modelling of the melting temperature of nano-ice in
MCM-41 pores / / J. of Physics: Condens. Matter. 2001. Vol. 13. № 20. P. L.397-L.401.
14. Korobeynikov S. M., Drozhzhin A. P., Furin G. G., Charalambakos V. P., Agoris D. P.
Surface conductivity in liquid-solid interface due to image force / / Proceedings of 2002 IEEE
14th International Conference on Dielectric Liquids. ICDL. 2002. Vol. 2. P. 270-273.
15. Korobeynikov S. M., Melekhov A. V., Soloveitchik Yu. G., Rovak M. E., Agoris D. P.,
Pvrgioti E. Surface conductivity at the interface between ceramics and transformer oil / / Journal
of Physics D: Applied Physics. 2005. Vol. 38, Is. 6. P. 915-921.
16. Mishima O., Stanley H. E. The relationship between liquid, supercooled and glassy
water / / Nature. 1998. Vol. 396, Is. 6709. P. 329-335.
17. Quigley D., Alfe D., Slater В. Communication: On the stability of ice 0, ice i, and Ih / /
The Journal of Chemical Physics. 2014. Vol. 141. P. 161102-1/5.
18. Russo J., Romano F., Tanaka H. New metastable form of ice and its role in the
homogeneous crystallization of water / / Nature materials. 2014. Vol. 13. P. 733-793.
19. Schreiber A., Kotelsen I., Findenegv G.H. Melting and freezing of water in ordered
mesoporous silica materials / / Phvs. Chem. Chem. Phvs. 2001. Vol. 3. P. 1185-1195.
20. Sellberg J. A., Huang C., McQueen T. A., Loh N. D., Laksmono H., Schlesinger D.,
Sierra R. G., Nordlund D., Hampton C. Y., Starodub D., Deponte D. P., Beye M.. Chen C.,
Martin A. V., Bartv A., Wikfeldt К. T., Weiss T. M.. Caronna C., Feldkamp J., Skinner L. B.,
Seibert M. M.. Messerschmidt M.. Williams G. J., Boutet S., Pettersson L. G. M.. Bogan M.
J., Nilsson A. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation
temperature / / Nature. 2014. Vol. 510. No. 7505. P. 381-384.
21. Sharkov E. A. Passive Microwave Remote Sensing of the Earth: Physical Foundations.
Berlin: Springer/PRAXIS, 2003. 613 p.
22. Slater B., Quigley D. Crystal nucleation: Zeroing in on ice / / Nature Materials. 2014.
Vol. 13, No. 7. P. 670-671.
23. Solvevra E. G., Llave E., Scherlis D. A., Molinero V. Melting and Crystallization of Ice
in Partially Filled Nanopores / / J. Phvs. Chem. B. 2011. Vol. 115, Is. 48. P. 14196-14204.
24. Webber B. Studies of nano-structured liquids in confined geometries and at surfaces / /
Progress in Nuclear Magnetic Resonance Spectroscopy. 2010. Vol. 56, Is. 1. P. 78-93. |