Article |
---|
Article name |
Numerical Modeling of Diffusive Processes in Fractal Media |
Authors |
Korchagina A.N. Postgraduate Student, anchouse@ngs.ruMerzhievsky , () L.A. Doctor of Physics and Mathematics, Professor of the Laboratory of High Velocity Processes, merzh@hydro.nsc.ru |
Bibliographic description |
|
Section |
Scientific Research |
UDK |
539.219.3 |
DOI |
|
Article type |
|
Annotation |
Derivatives of a fractional order are used for modeling of anomalous diffusion. Various
definitions of fractional derivatives are considered, comparison of numerical solutions of a
number of problems of diffusion by various numerical methods is carried out. The most
perspective definitions and methods of the numerical decision are specified.
|
Key words |
anomalous diffusion, fractional derivatives, fractal media. |
Article information |
|
References |
1. Metzler R., Klafter J. The random walk’s guide to anomalous diffusion: a fractional
dynamics approach // Phys. Rep. 2000. V. 339 P. 1.–77.
2. Uchayykin V. V. Avtomodelnaya anomaliya diffuziya i ustoychivye zakony // UFN
2003. T. 173. № 8. S. 847–876.
3. Paradisi P., Cesari R., Mainardi F., Tampieri F. The fractional Fick’s law for non-local
transport processes // Physica A. 2001. Т. 293 P. 130–142.
4. Samko S. G., Kilbas A. A., Marichev O. I. Integraly i proizvodnye drobnogo poryadka
i nekotorye ikh prilozheniya. Minsk: Nauka i tekhnika, 1987.
5. Gorenflo R. Fractional calculus: some numerical methods // Fractals and Fractional
Calculus in Continuum Mechanics, eds. A. Carpinteri and F. Mainardi. Springer Verlag,Wien,
1997. №. 378. P. 277–290.
6. Merzhiyevsky L. A., Korchagina A. N. Sravneniye metodov chislennogo resheniya
zadach dlya uravneniya teploprovodnosti drobnogo poryadka // X Mezhdunarodny seminar
¾Supervychisleniya i matematicheskoye modelirovaniye¿. Saratov, 2008. S. 85–86.
7. Golovizin V. M., Kiselyov V. P., Korotkin I. A. Chislennye metody uravneniya drobnoy
diffuzii v odnomernom sluchaye. M., 2002 (pereprint /IBR AE RAN. IBRAE-2002-01)
8. Lukashchuk S. Yu. Kostrigin I. V. Chislennoye resheniye diffuzno-volnovykh uravneny
drobnogo poryadka na klasternykh sistemakh // Trudy VI Vserossyskaya konferentsiya
molodykh uchenykh po mat. modelirovaniyu i inform. tekhnologiyam. Kemerovo, 2005. S.
19.
9. Merzhiyevsky L. A., Korchagina A. N. Modelirovaniye raspredeleniya teplovogo
impulsa vo fraktalnoy srede // Ekstremalnye sostoyaniya veshchestva. Detonatsiya. Udarnye
volny. Trudy mezhdunarodnoy konferentsii ¾XI Kharitonovskiye tematicheskiye nauchnye
chteniya¿. Sarov, 2009. S. 250–254.
10. Taukenova F. I., Shkhanukov-Lafishev M. Kh. Raznostnye metody resheniya
krayevykh zadach dlya differentsialnykh uravneny drobnogo poryadka // Zhurnal
vychislitelnoy matematiki i matematicheskoy fiziki. 2006. T. 46. № 10. S. 1871–1881. |
Full article | Numerical Modeling of Diffusive Processes in Fractal Media |