Article
Article name Numerical Modeling of Diffusive Processes in Fractal Media
Authors Korchagina A.N. Postgraduate Student, anchouse@ngs.ru
Merzhievsky , () L.A. Doctor of Physics and Mathematics, Professor of the Laboratory of High Velocity Processes, merzh@hydro.nsc.ru
Bibliographic description
Section Scientific Research
UDK 539.219.3
DOI
Article type
Annotation Derivatives of a fractional order are used for modeling of anomalous diffusion. Various definitions of fractional derivatives are considered, comparison of numerical solutions of a number of problems of diffusion by various numerical methods is carried out. The most perspective definitions and methods of the numerical decision are specified.
Key words anomalous diffusion, fractional derivatives, fractal media.
Article information
References 1. Metzler R., Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach // Phys. Rep. 2000. V. 339 P. 1.–77. 2. Uchayykin V. V. Avtomodelnaya anomaliya diffuziya i ustoychivye zakony // UFN 2003. T. 173. № 8. S. 847–876. 3. Paradisi P., Cesari R., Mainardi F., Tampieri F. The fractional Fick’s law for non-local transport processes // Physica A. 2001. Т. 293 P. 130–142. 4. Samko S. G., Kilbas A. A., Marichev O. I. Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya. Minsk: Nauka i tekhnika, 1987. 5. Gorenflo R. Fractional calculus: some numerical methods // Fractals and Fractional Calculus in Continuum Mechanics, eds. A. Carpinteri and F. Mainardi. Springer Verlag,Wien, 1997. №. 378. P. 277–290. 6. Merzhiyevsky L. A., Korchagina A. N. Sravneniye metodov chislennogo resheniya zadach dlya uravneniya teploprovodnosti drobnogo poryadka // X Mezhdunarodny seminar ¾Supervychisleniya i matematicheskoye modelirovaniye¿. Saratov, 2008. S. 85–86. 7. Golovizin V. M., Kiselyov V. P., Korotkin I. A. Chislennye metody uravneniya drobnoy diffuzii v odnomernom sluchaye. M., 2002 (pereprint /IBR AE RAN. IBRAE-2002-01) 8. Lukashchuk S. Yu. Kostrigin I. V. Chislennoye resheniye diffuzno-volnovykh uravneny drobnogo poryadka na klasternykh sistemakh // Trudy VI Vserossyskaya konferentsiya molodykh uchenykh po mat. modelirovaniyu i inform. tekhnologiyam. Kemerovo, 2005. S. 19. 9. Merzhiyevsky L. A., Korchagina A. N. Modelirovaniye raspredeleniya teplovogo impulsa vo fraktalnoy srede // Ekstremalnye sostoyaniya veshchestva. Detonatsiya. Udarnye volny. Trudy mezhdunarodnoy konferentsii ¾XI Kharitonovskiye tematicheskiye nauchnye chteniya¿. Sarov, 2009. S. 250–254. 10. Taukenova F. I., Shkhanukov-Lafishev M. Kh. Raznostnye metody resheniya krayevykh zadach dlya differentsialnykh uravneny drobnogo poryadka // Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki. 2006. T. 46. № 10. S. 1871–1881.
Full articleNumerical Modeling of Diffusive Processes in Fractal Media