Article
Article name On a Problem of the Best Choice with Consensus Rule
Authors Tokareva J.S. Candidate of Physics and Mathematics, jtokareva2@mail.ru
Mazalov V.V. Doctor of Physics and Mathematics, Professor, vmazalov@krc.karelia.ru
Bibliographic description
Section Scientific Research
UDK 519.833.2
DOI
Article type
Annotation This paper considers the multi-stage game of three persons. A cake of unit size is divided between the three players. To resolve the problem, an arbitrator who is represented by a random number from the Dirichlet distribution is invited. The analytical expression of each of the three winning players as recurrence formulas is found. The optimal behavior of the negotiators is obtained in the class of threshold strategies.
Key words negotiation problem, the best choice, arbitrator, discounting, Dirichlet distribution, threshold strategies.
Article information
References 1. Brams S. J., Taylor A. D. Fair Division: from Cake-Cutting to Dispute Resolution. Cambridge University Press, 1996. 272 p. 2. Brams S. J., Taylor A. D. An envy-free cake division protocol // American Mathematical Monthly. 1995. Vol. 102, № 1. P. 9–18. 3. Crawford V. P. On Complusory arbitration schemes // Journal of Political Economy. 1973. Vol. 11. P. 13–15. 4. Dubins L. E., Spanier E. H. How to cut a cake fairly // American Mathematical Monthly. 1961. Vol. 68. P. 1–17. 5. Garnaev A. Y. Value of information in optimal stopping games // Game Theory and Applications. 2000. Vol. 5. P. 55–64. 6. Hamers H. A Silent Duel over a Cake // Mathematical Methods of Operations Research. 1993. Vol. 43. P. 119–127. 7. Mazalov V.V., Banin M.V. N-person best-choice game with voting // Game Theory and Applications. 2003. N 9. P. 45–153. 8. Mazalov V.V., Sakaguchi M., Zabelin A.A. Multistage arbitration game with random offers // Game Theory and Applications. 2002. N 8. P. 95–106. 9. Rubinstein A. Perfect Equilibrium in a Bargaining Model // Econometrica. 1982. Vol. 50(1). 97–109. 10. Sakaguchi M. Best-choice game where arbitration comes in // Game Theory and Applications. 2003. N 9. P. 141–149. 11. Steinhaus H. The problem of fair division // Econometrica. 1948. № 16. P. 101–104. 12. Stromquist W. How to cut a cake fairly // American Mathematical Monthly. 1980. Vol. 87, № 8. P. 640–644. 13.Mazalov V. V., Mencher A. E., Tokareva Yu. S. Peregovory.Matematicheskaya teoriya. Spb.: Lan, 2012. 304 s. 14. Mazalov V. V., Nosalskaya T. E. Stokhasticheksy lizayn v zadache o delezhe piroga // Matematicheskaya teoriya igshr i eye prilozheniya. 2012. Vyp. 4. T. 3. S. 33–50.
Full articleOn a Problem of the Best Choice with Consensus Rule