Article |
---|
Article name |
On a Problem of the Best Choice with Consensus Rule |
Authors |
Tokareva J.S. Candidate of Physics and Mathematics, jtokareva2@mail.ruMazalov V.V. Doctor of Physics and Mathematics, Professor, vmazalov@krc.karelia.ru |
Bibliographic description |
|
Section |
Scientific Research |
UDK |
519.833.2 |
DOI |
|
Article type |
|
Annotation |
This paper considers the multi-stage game of three persons. A cake of unit size is divided
between the three players. To resolve the problem, an arbitrator who is represented by a
random number from the Dirichlet distribution is invited. The analytical expression of each
of the three winning players as recurrence formulas is found. The optimal behavior of the
negotiators is obtained in the class of threshold strategies.
|
Key words |
negotiation problem, the best choice, arbitrator, discounting, Dirichlet
distribution, threshold strategies. |
Article information |
|
References |
1. Brams S. J., Taylor A. D. Fair Division: from Cake-Cutting to Dispute Resolution.
Cambridge University Press, 1996. 272 p.
2. Brams S. J., Taylor A. D. An envy-free cake division protocol // American
Mathematical Monthly. 1995. Vol. 102, № 1. P. 9–18.
3. Crawford V. P. On Complusory arbitration schemes // Journal of Political Economy.
1973. Vol. 11. P. 13–15.
4. Dubins L. E., Spanier E. H. How to cut a cake fairly // American Mathematical
Monthly. 1961. Vol. 68. P. 1–17.
5. Garnaev A. Y. Value of information in optimal stopping games // Game Theory and
Applications. 2000. Vol. 5. P. 55–64.
6. Hamers H. A Silent Duel over a Cake // Mathematical Methods of Operations
Research. 1993. Vol. 43. P. 119–127.
7. Mazalov V.V., Banin M.V. N-person best-choice game with voting // Game Theory
and Applications. 2003. N 9. P. 45–153.
8. Mazalov V.V., Sakaguchi M., Zabelin A.A. Multistage arbitration game with random
offers // Game Theory and Applications. 2002. N 8. P. 95–106.
9. Rubinstein A. Perfect Equilibrium in a Bargaining Model // Econometrica. 1982.
Vol. 50(1). 97–109.
10. Sakaguchi M. Best-choice game where arbitration comes in // Game Theory and
Applications. 2003. N 9. P. 141–149.
11. Steinhaus H. The problem of fair division // Econometrica. 1948. № 16. P. 101–104.
12. Stromquist W. How to cut a cake fairly // American Mathematical Monthly. 1980.
Vol. 87, № 8. P. 640–644.
13.Mazalov V. V., Mencher A. E., Tokareva Yu. S. Peregovory.Matematicheskaya teoriya.
Spb.: Lan, 2012. 304 s.
14. Mazalov V. V., Nosalskaya T. E. Stokhasticheksy lizayn v zadache o delezhe piroga //
Matematicheskaya teoriya igshr i eye prilozheniya. 2012. Vyp. 4. T. 3. S. 33–50. |
Full article | On a Problem of the Best Choice with Consensus Rule |