Article |
---|
Article name |
Boundary Value Problems in Areas with Nano-structured Boundaries (Coatings). Duality Theorem |
Authors |
Kholodovsky S.Y. Doctor of Physics and Mathematics, hol47@yandex.ru |
Bibliographic description |
|
Section |
Scientific Research |
UDK |
530 : 517.956 |
DOI |
|
Article type |
|
Annotation |
The article describes a class of boundary value problems in a half-cylinder D =
[x < 0) x (y e Q C Rm) whose base x = 0 is a multilayer film consisting of alternating infinitely thin strongly and weakly permeable layers. The author considers the boundary conditions of the two types at a given potential and given normal speed at the outer side of the film. It is proved that the solution of one problem is expressed in terms of other problem at the same time strongly and weakly permeable layer switch roles.
|
Key words |
boundary value problem, boundary multilayer films, strongly and weakly permeable layers. |
Article information |
|
References |
1. Glaz’ev S. Yu., Kharitonov V. V. Nanotekhnologii как klyuchevoi faktor novogo tekhnologicheskogo uklada v ekonomike: Monografiya. M.: Trovant, 2009 g. 304 s.
2. Kholodovskii S. E. О reshenii kraevykh zadach v poluprostranstve, ogranichennom mnogosloinoi plenkoi // Uchenye zapiski ZabGGPU. Ser. Fizika, matematika, tekhnika, tekhnologiya. 2011. № 3 (38). S. 160 164.
3. Kholodovskii S. E. Reshenie zadachi о dvizhenii neogranichennoi razryvnoi struny (sterzhnya) s uprugim kontaktom // Uchenye zapiski ZabGU. Ser. Fizika, matematika, tekhnika, tekhnologiya. 2013. № 3 (50). S. 132-139.
4. Kholodovskii S. E., Potekho A. O. Reshenie kraevoi zadachi о dvizhenii poluogranichennoi struny s granichnym usloviem tret’ego roda // Uchenye zapiski ZabGU. Ser. Fizika, matematika, tekhnika, tekhnologiya. 2013. № 3 (50). S. 140-145.
5. Kholodovskii S. E. Effective Solution of the Problem of Motion of an Infinite String with an Attached Point Mass // Computational Mathematics and Mathematical Physics. 2015. Vol. 55. No. 1. P. 101-108. |
Full article | Boundary Value Problems in Areas with Nano-structured Boundaries (Coatings). Duality Theorem |