Article |
---|
Article name |
One Problem of the Approximation of Process Data Set by Methods of Fuzzy Logic |
Authors |
Tolpaev V.A. Doctor of Physics and Ma-thematics, Professor, v.a.tolpaev@mail.ruKravtsov A.M. Candidate of Physics and Mathematics, alex_k@bk.ruPetrosyants M.T. Junior Research, Postgraduate Student,, musheg901@mail.ruBondarenko M.A. Junior Researcher, Postgraduate Student, TolpaevVA@scnipigaz.ru |
Bibliographic description |
Tolpayev V. A., Kravtsov A. M., Petrosyants M. T., Bondarenko M. A One Problem of the Approximation of Process Data Set by Methods of Fuzzy Logic // Scholarly Notes Of TTansbaikal State University. Series Physics, Mathematics, Engineering, Technology. 2017. Vol. 12, No. 4. PP. 15-23. DOI: 10.21209/2308-8761-2017-12-4-15-23. |
Section |
PROBLEMS OF MATHEMATICAL PHYSICS. ANALYTICAL METHODS |
UDK |
519.65 |
DOI |
10.21209/2308-8761-2017-12-4-15-23 |
Article type |
|
Annotation |
We study the problem of approximation of tabular data with the same large size lines. We suggest a formulation of the problem in terms of fuzzy sets and approximate way of describing the a - slices of fuzzy sets of special polynomial functions - Bernstein polynomial for the case of several variables. An approximate algorithm for solving the problem allowing the decomposition of the original problem is an example of his work. We give estimates for the number of characteristics of the approximate function data table. The study provides empirical assessments of the time complexity of the algorithm for a number of practical applications of the algorithm.
|
Key words |
tab functions, detect dependencies in the data, the simplex method, decomposition approximation problem |
Article information |
|
References |
1. Bondarenko M. A. Metody matematicheskogo modelirovaniya v zadachakh optimal’nogo upravleniya tekhnologicheskimi protsessami intellektual’nogo mestorozhdeniya // Novye tekhnologii v gazovoi promyshlennosti: tezisy dokladov 11-i Vseros. konf. molodykh uchenykh, spetsialistov i studentov. M.: RGU im. I. M. Gubkina, 2015. S. 286.
2. Zakharov V. V., Kravtsov A. M., Priimenko S. A. Obobshcheniya polinomov Bernshteina v zadachakh mnogokriterial’noi optimizatsii // Nauka i mir. 2014. T. 1, № 2.
3. Wang L. X. A Course in Fuzzy Systems and Control. Prentice-Hall International, Inc., 1994. |
Full article | One Problem of the Approximation of Process Data Set by Methods of Fuzzy Logic |