Article |
---|
Article name |
Using Microwave, Electric and Thermal Measurements for Study of the Phase State of Water in Nano-Porous Media |
Authors |
Tsyrenzhapov S.V. Junior Researcher, lgc255@mail.ruBordonsky G.S. Doctor of Physics and Mathematics, the Chief of the Laboratory of Cryogenesis Geophysics, lgc255@mail.ruSigachev N.P. Doctor of Engineering Science, Director, , snp.zab@mail.ru |
Bibliographic description |
Tsyrenzhapov S. V., Bordonskiy G. S., Sigachev N. P. Using Microwave, Electric and Thermal Measurements for Study of the Phase State of Water in Nano-Porous Media // Scholarly Notes Of Transbaikal State University. Series Physics, Mathematics, Engineering, Technology. 2017. Vol. 12, No 4. No. 4. P. 88-96. DOI: 10.21209/2308-8761-2017-12-4-88-96. |
Section |
ENGINEERING. TECHNOLOGY. EXPERIMENT |
UDK |
537.226 |
DOI |
10.21209/2308-8761-2017-12-4-88-96 |
Article type |
|
Annotation |
The measurement techniques of phase transitions in nanoporous media are presented. Along with thermal measurements it is offered to measure electric potentials and power of the microwave radiation propagated through the studied specimens. Microwave radiations are sensitive to phase transition of water-ice because of essential distinction of electromagnetic losses in liquid and ice. When using electrodes from chemically identical metals, electric potentials allow us to define inhomogeneities in the media and transitions through a percolation point. Jump of potentials corresponds to disappearance of through conduction of the media. Examples of effectiveness of the offered techniques at temperature measurements of the wet nanoporous specimens are presented. If three techniques are used simultaneously, it is possible to obtain rather complete information on phase transitions of water in various natural and artificial media.
|
Key words |
phase transition, ice, microwave radiation, electric potentials, thermal measurements, nanoporous specimens |
Article information |
|
References |
1. Bordonskii G. S., Gurulev A. A., Krylov S. D., Sigachev N. P., Shchegrina K. A. Izuchenie svoistv kriogelei po ikh mikrovolnovym kharakteristikam // Kondensirovannye sredy i mezhfaznye granitsy. 2016. T. 18, № 3. S. 304-311.
2. Bordonskii G. S., Istomin A. S., Krylov S. D. Dielektricheskaya pronitsaemost’ i elektricheskie potentsialy l’da s vklyucheniyami // Kondensirovannye sredy i mezhfaznye granitsy. 2009. T.11, № 3. S. 198-202.
3. Bordonskii G. S., Krylov S. D. Strukturnye prevrashcheniya pereokhlazhdennoi vody v nanoporakh po dannym o pogloshchenii mikrovolnovogo izlucheniya // Zhurnal fizicheskoi khimii. 2012. T. 86, № 11. S. 1806-1812.
4. Bordonskii G. S., Tsyrenzhapov S. V., Kharin Yu. V. Akustoelektricheskii effekt v presnom l’du // Kondensirovannye sredy i mezhfaznye granitsy. 2012. T. 14, № 2. S. 169 -174.
5. Tarasevich Yu. Yu. Perkolyatsiya: teoriya, prilozheniya, algoritmy. M.: URSS, 2012. 112 c.
6. Fedynskii V. V., Tarkhov A. G. Elektrorazvedka: sprav. geofizika. M.: Nedra, 1979. 518 s.
7. Shklovskii B. I., Efros A. L. Elektronnye svoistva legirovannykh poluprovodnikov. M.: Nauka, 1970. 416 s.
8. Barsukov E., Macdonald J. R. Impedance Spectroscopy: Theory, Experiment, and Applications. N. Y.: Wiley, 2005. 608 p.
9. Fedichev P. O., Menshikov L. I., Bordonskiy G. S., Orlov A. O. Experimental evidence of the ferroelectric nature of the А-point transition in liquid water // Pis’ma v ZhETF. 2011. T. 94, vyp. 5-6. S. 433-437.
10. Komarov V., Wang S., Tang J. Permittivity and measurements // Encyclopedia of RF and Microwave Engineering / edited by K. Chang. J. Wiley & Sons, Inc., 2005. P. 3693-3711.
11. Petrenko V., Whitworth R.W. Physics of Ice. Oxford Univ. Press., 1999. 347 p.
12. Sharkov E.A. Passive Microwave Remote Sensing of the Earth: Physical Foundations. Berlin, N. Y., London, Paris, Tokyo. Springer / PRAXIS, 2003. 613 p. |
Full article | Using Microwave, Electric and Thermal Measurements for Study of the Phase State of Water in Nano-Porous Media |