Article
Article name The Problem of Motion of an Unbounded Piecewise Homogeneous String
Authors Kholodovsky S.Y. Doctor of Physics and Mathematics, hol47@yandex.ru
Chuhrii P.A. Master Student, pchuxrij@mail.ru
Bibliographic description Kholodovskii S. Ye., Chuhrii P. A. The Problem of Motion of an Unbounded Piecewise Homogeneous String // Scholarly Notes Of Transbaikal State University. Series Physics, Mathematics, Engineering, Technology. 2018. Vol. 13, No. 4. PP. 42-50. DOI: 10.21209/2308- 8761-2018-13-4-42-50.
Section PROBLEMS OF MATHEMATICAL PHYSICS. ANALYTICAL METHODS
UDK 517.956
DOI 10.21209/2308-8761-2018-13-4-42-50
Article type
Annotation A Cauchy problem for an unbounded string consisting of two homogeneous parts with different density is considered. We give the linear formulation of the problem. The solution of the problem in explicit form in single quadratures is obtained. String graphs with a certain time step for different combinations of composite string densities are constructed.
Key words transverse motion of the piecewise-homogeneous strings, Cauchy problem for the wave equation, graphic illustration of the compound string movement
Article information
References 1. Arsenin V. Ya. Metodyi matematicheskoy fiziki i spetsialnyie funktsii. M.: Nauka, 1974. 432 s. 2. Budak В. M., Samarskiy A. A., Tihonov A. N. Sbornik zadach po matematicheskoy fizike. M.: Nauka, 1980. 686 s. 3. Koshlyakov N. S., Gliner E. B., Smirnov M. M. Uravneniya v chastnyih proizvodnyih matematicheskoy fiziki. M.: Vyissh. sh., 1970. 710 s. 4. Lomov I. S. Negladkie sobstvennyie funktsii v zadachah matematicheskoy fiziki // Differentsialnyie uravneniya. 2011. T. 47, № 3. S. 358-365. 5. Tihonov A. N., Samarskiy A. A. Uravneniya matematicheskoy fiziki. M.: Nauka, 1972. 735 s. 6. Kholodovskii S. E. Ob effektivnom reshenii zadachi о dvizhenii neogranichennoy strunyi s tochechnoy massoy // Zhurnal vyichislitelnoy matematiki i matematicheskoy fiziki. 2015. T. 55, № 1. S. 115-122. (Kholodovskii S. E. Effective Solution of the Problem of Motion of an Infinite String with an Attached Point Mass // Computational Mathematics and Mathematical Physics. 2015. Vol. 55, No. 1. Pp. 101-108).
Full articleThe Problem of Motion of an Unbounded Piecewise Homogeneous String