Article |
---|
Article name |
The Problem of Motion of an Unbounded Piecewise Homogeneous String |
Authors |
Kholodovsky S.Y. Doctor of Physics and Mathematics, hol47@yandex.ruChuhrii P.A. Master Student, pchuxrij@mail.ru |
Bibliographic description |
Kholodovskii S. Ye., Chuhrii P. A. The Problem of Motion of an Unbounded Piecewise Homogeneous String // Scholarly Notes Of Transbaikal State University. Series Physics, Mathematics, Engineering, Technology. 2018. Vol. 13, No. 4. PP. 42-50. DOI: 10.21209/2308- 8761-2018-13-4-42-50. |
Section |
PROBLEMS OF MATHEMATICAL PHYSICS. ANALYTICAL METHODS |
UDK |
517.956 |
DOI |
10.21209/2308-8761-2018-13-4-42-50 |
Article type |
|
Annotation |
A Cauchy problem for an unbounded string consisting of two homogeneous parts with different density is considered. We give the linear formulation of the problem. The solution of the problem in explicit form in single quadratures is obtained. String graphs with a certain time step for different combinations of composite string densities are constructed.
|
Key words |
transverse motion of the piecewise-homogeneous strings, Cauchy problem for the wave equation, graphic illustration of the compound string movement |
Article information |
|
References |
1. Arsenin V. Ya. Metodyi matematicheskoy fiziki i spetsialnyie funktsii. M.: Nauka, 1974. 432 s.
2. Budak В. M., Samarskiy A. A., Tihonov A. N. Sbornik zadach po matematicheskoy fizike. M.: Nauka, 1980. 686 s.
3. Koshlyakov N. S., Gliner E. B., Smirnov M. M. Uravneniya v chastnyih proizvodnyih matematicheskoy fiziki. M.: Vyissh. sh., 1970. 710 s.
4. Lomov I. S. Negladkie sobstvennyie funktsii v zadachah matematicheskoy fiziki // Differentsialnyie uravneniya. 2011. T. 47, № 3. S. 358-365.
5. Tihonov A. N., Samarskiy A. A. Uravneniya matematicheskoy fiziki. M.: Nauka, 1972. 735 s.
6. Kholodovskii S. E. Ob effektivnom reshenii zadachi о dvizhenii neogranichennoy strunyi s tochechnoy massoy // Zhurnal vyichislitelnoy matematiki i matematicheskoy fiziki. 2015. T. 55, № 1. S. 115-122. (Kholodovskii S. E. Effective Solution of the Problem of Motion of an Infinite String with an Attached Point Mass // Computational Mathematics and Mathematical Physics. 2015. Vol. 55, No. 1. Pp. 101-108). |
Full article | The Problem of Motion of an Unbounded Piecewise Homogeneous String |