Article |
---|
Article name |
Evolution and Instability of the Dendrite Growth Line in a Supercooled Melt |
Authors |
Shablovsky O.N. Doctor of Physics and Mathematics, Professor, shablovsky-on@yandex.ruKroll D.G. Candidate of Physics and Mathematics, Associate Professor, kr-dmitry@yandex.ruKontsevoy I.A. Senior Lecturer, ivankon@yandex.ru |
Bibliographic description |
Shablovsky O. N., Kroll D. G., Kontsevoy I. A. Evolution and Instability of the Dendrite Growth Line in a Supercooled Melt // Scholarly Notes of Transbaikal State University. Series Physics, Mathematics, Engineering, Technology. 2018. Vol. 13, No. 4. PP. 56-68. DOI: 10.21209/2308-8761-2018-13-4-56-68. |
Section |
PROBLEMS OF MATHEMATICAL PHYSICS. ANALYTICAL METHODS |
UDK |
517.956 |
DOI |
10.21209/2308-8761-2018-13-4-56-68 |
Article type |
|
Annotation |
The growth of a dendrite in a unicomponent overcooled melt is studied. The phase boundary is considered as a strong rupture surface complying the conditions of dynamical compatibility subjected to the integral conservation laws. We studied the class of movements with the phase boundary velocity depending on the angle between the normal and the growth line. The time evolution of the two-dimensional contour of the phase boundary was studied both analytically and numerically. The shape of the growth line, its curvature, velocity and heat flux in the solid phase were studied as well. With respect to the problem of the vibration effect on the crystallization process, the influence of phase boundary velocity fluctuations on the heat transfer intensification is considered. The calculations showed strong sensitivity of the heat flux to changes in the vibration amplitude. The uniform (with account to the special time coordinate) growth of a two-dimensional axially symmetric contour of dendrite is considered. The case when the original line suffers a perturbation localized at a final distance from the vertex is analyzed. It is established that the perturbation of the growth line curvature (a protrusion or a dent) induces a harbinger of a side branches of an axon. Its geometrical image is the point of intersection of the time-evolving the contour line. The applied aspects of the report refer to the methods of high-speed solidification of melts and obtaining new functional materials.
|
Key words |
interface evolution, morphological stability, crystal growth velocity, side branch |
Article information |
|
References |
1. Apshtejn E. Z., Pilyugin N. N. Stacionarnaya forma tel pri ih razrushenii pod dejstviem teplovyh potokov, zavisyashchih ot lokaknogo ugla naklona poverhnosti // Izvestiya AN SSSR. Mekhanika zhidkosti i gaza. 1981. № 6. S. 137-143.
2. Bagdasarov H. S. Vysokotemperaturnaya kristallizaciya iz rasplava. M.: Fizmatlit, 2004. 160 s.
3. Zharinov E. V., Suhanova E. A., Belov S. D., Golyshev V. D., Balikchi EH., Avetisov I. H. Kombinirovannyj metod aksial’nyh nizkochastotnyh vibracij i aksial’nogo teplovogo potoka dlya vyrashchivaniya kristallov iz rasplava// Doklady Akademii nauk. 2015. T. 461, № 2. S. 164-167.
4. Zhou D., Kasas-Baskes H., Lebon Dzh. Rasshirennaya neobratimaya termodinamika. M.; Izhevsk: NIC «Regulyarnaya i haoticheskaya dinamika», 2006. 528 s.
5. Konyaev V. G. Analiticheskoe issledovanie izmeneniya formy abliruyushchih tel pri ih dvizhenii v atmosfere so sverhzvukovymi skorostyami // Uchenye zapiski CAGI. 1974. T. 5, № 6. S. 125-128.
6. Murzinov I. N. О forme tel, razrushayushchihsya pod dejstviem intensivnogo nagrevaniya pri dvizhenii v atmosfere // Izvestiya AN SSSR. Mekhanika. 1965. № 4. S. 36-40.
7. Shablovskij O. N. Morfologicheskie svojstva linii rosta dvumernogo dendrita v pereohlazhdyonnom rasplave // Prikladnaya fizika. 2012. № 4. S. 40-46.
8. Shibkov A. A., Leonov A. A., Kazakov A. A., Stolbennikov S. S. Svyaz’ nestacionarnogo rosta vershiny dendrita s obrazovaniem bokovyh vetvej // Materialovedenie. 2005. № 7. S. 2-9.
9. Brener E. A., Mel’nikov V. I. Pattern selection in two-dimensional dendritic growth // Advances in Physics. 1991. Vol. 40, № 1. Pp. 53-97.
10. Chernov A. A., Rashkovich L. N., Vekilov P. G. Steps in solution growth: dynamics of kinks, bunching and turbulence // Journal of Crystal Growth. 2005. Vol. 275. Pp. 1—18.
11. Glicksman M. E. Capillary-mediated interface perturbations: Deterministic pattern formation // Journal of Crystal Growth. 2016. Vol. 450. Pp. 119-139.
12. Gurtin M. E., Jabbour M. E. Interface evolution in three dimensions with curvature- dependent energy and surface diffusion: interface-controlled evolution, phase transitions, epitaxial growth of elastic films // Arch. Rational Mech. Anal. 2002. Vol. 163. Pp. 171—208.
13. Mullis A. M. Deterministic side-branching during thermal dendritic growth // IOP Conf. Series: Materials Science and Engineering. 2015. Vol. 84. 012071. Pp. 1—9.
14. Veenendaal Е., Nijdam A. J., Suchtelen J. Simulation of crystal shape evolution in two dimensions // Journal of Crystal Growth. 2002. Vol. 235. Pp. 603—618. |
Full article | Evolution and Instability of the Dendrite Growth Line in a Supercooled Melt |