Article |
---|
Article name |
The Control System of Mechatronic Screwed Assembly on the Basis of the Neural Structure with Fuzzy Logic |
Authors |
Berezin S.Y. Doctor of Engineering, chumakov@mail.ru |
Bibliographic description |
Reference to article
Berezin S. Ya. The Control System of Mechatronic Screwed Assembly on the Basis of the Neural Structure with Fuzzy Logic // Scholarly Notes of Transbaikal State University. Series Physics, Mathematics, Engineering, Technology. 2018. Vol. 13, No 4. PP. 69-79. DOI: 10.21209/2308-8761-2018-13-4-69-79. |
Section |
MATHEMATICAL MODELS. EXPERIMENT |
UDK |
621.88.002.72 |
DOI |
10.21209/2308-8761-2018-13-4-69-79 |
Article type |
|
Annotation |
The article presents a system of automatic control mechatronic screwing machines with elements of artificial intelligence and developed information environment. The system uses a hybrid control principle based on neural network structures and known PID control units. Neural network is formed on the principles of fuzzy logic. We developed the functioning models of assembly plants for automation of operations of screwing of small-sized fasteners by mechatronic screw-head with automatic control system of its modes of operation and CNC technological equipment. A series of experimental studies of the efficiency of the developed control system has shown a high efficiency of assembly operations. The proposed system provides the possibility of constructing high-precision control systems for the assembly process of threaded connections with maximum control of its parameters and conditions of implementation.
|
Key words |
automation control, neural network, PID controller, screw joints, feedback, stepper motor, assembly head |
Article information |
|
References |
1. Berezin S. Ya. Parametricheskii analiz struktury mekhatronnogo privoda zavinchivayushchikh avtomatov / / Uchenye zapiski Zabaikal’skogo gosudarstvennogo universiteta. Ser. Fizika, matematika, tekhnika, tekhnologiya. 2017. T. 12, № 4. S. 38-44.
2. Berezin S. Ya., Okhrimenko M. I. Robotizatsiya operatsii zavinchivaniya krepezhno- rez’boobrazuyushchikh detalei // Izvestiya MGTU «МАМ1». Nauchnyi retsenziruemyi zhurnal. 2010. № 1. 286 s.
3. Berezin S. Ya., Okhrimenko M. I. Mekhatronnyi zavinchivayushchii modul’s intellektnoi sistemoi upravleniya rezhimami sborki // Kulaginskie chteniya: materialy XVII Mezhdunar. nauch.-prakt. konf. (g. Chita, 28-30 noyab. 2017 g.). Chita: ZabGU, 2017.
4. Kabak I. S., Sukhanova N. V. Modelirovanie nadezhnosti programmnogo obespecheniya
sistem upravleniya avtomatizirovannymi tekhnologicheskimi kompleksami na baze
iskusstvennogo intellekta // Vestnik MGTU «Stankin». 2012. № 1. S. 95-99.
5. Makarov I. M., Lokhin V. M., Man’ko S. V., Romanov M. P. Iskusstvennyi intellekt i intellektual’nye sistemy upravleniya / otv. red. I. M. Makarova. M.: Nauka, 2006. 333 s.
6. Chumakov R. E. Sintez struktury tekhnologicheskoi sistemy dlya sborki rez’bovykh soedinenii v usloviyakh neopredelennosti // Sborka v mashinostroenii, priborostroenii. 2009. № 2. S. 3-8.
7. Lewis F. L., Shuzhi Sam Ge. Neural Networks in Feedback Control Systems. To appear in Mechanical Engineer’s Handbook. John Wiley. New York, 2005. P. 1-28.
8. Longwic R., Nieoczym A. Control of the process of screwing in the industrial screwdrivers // Advances in Science and Technology Research Journal. 2016. Vol. 10, No. 30. June. Pp. 202—206. |
Full article | The Control System of Mechatronic Screwed Assembly on the Basis of the Neural Structure with Fuzzy Logic |