УДК 539.3 ББК В 37

А. В. Калинин, Д. Д. Рудер г. Барнаул, Россия

Определение критических параметров начала пластической деформации в ГЦК кристалле в системе $(111) < 1\overline{1}0 >$

Проведено определение критических параметров начала пластической деформации в ГЦК кристалле. Расчеты проводились на основе метода молекулярной динамики с использованием потенциала Леннарда-Джонса. Были определены критические углы деформации, при котором происходит сдвиг узловых плоскостей (111).

Ключевые слова: пластическая деформация, молекулярная динамика, перестройка кристаллической структуры, напряжение сдвига, деформация сдвига.

A. V. Kalinin, D. D. Ruder
Barnaul, Russia

Characterization of Critical Parameters of the Beginning of Plastic Deformation in the FCC Crystal in the $(111) < 1\overline{1}0 >$ System

Characterization of critical parameters of plastic deformation in the FCC crystal is made. Calculations were based on the molecular dynamics method using the Lennard-Jones potential. We determined the critical angles of deformation, which shifts the nodal planes (111).

 $\it Keywords:$ plastic deformation, molecular dynamics, reorganization of crystal structure, a pressure of shift, deformation of shift.

Исследование перестройки кристаллической структуры представляют большой научный интерес, так как они могут дать детальную информацию о механизмах пластической деформации кристаллов.

Цель данной работы заключалась в том, чтобы с помощью компьютерного моделирования определить критические параметры начала пластической деформации в ГЦК кристалле, при котором происходит сдвиг узловых плоскостей (111) образца под воздействием на него касательных напряжений.

В качестве конкретного метода моделирования использовался метод молекулярной динамики [1; 3].

Для описания взаимодействия между атомами используется потенциал парного взаимодействия Леннарда-Джонса:

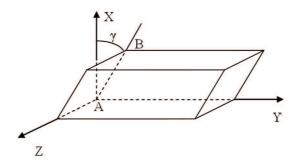
$$u(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

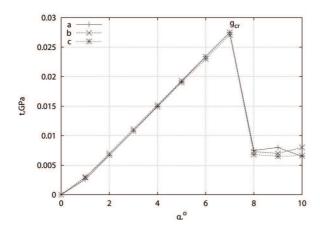
с параметрами $\varepsilon/k_b = 119.8, \sigma = 3.405A$ [4].

В исходном состоянии МД-ячейка представляет собой прямоугольный параллелепипед, стороны которого параллельны декартовым осям координат — X, Y, Z. Атомы располагаются в узлах ГЦК решетки, плотноупакованные плоскости (111) которой параллельны плоскости X=0, кристаллографические направления < $1\overline{10}$ > параллельны оси ОY, а направления < $11\overline{2}$ > – оси ОZ. Размеры МД-ячейки вдоль осей координат равны соответственно $(1/\sqrt{3}) \cdot n_x \cdot a, (\sqrt{3/2}) \cdot n_y \cdot a, \sqrt{2} \cdot n_z \cdot a,$ где n_x – число узловых плоскостей (111), n_y – число узловых плоскостей (1 $\overline{10}$), n_z – число узловых плоскостей (11 $\overline{2}$). Параметр ГЦК решетки аргона равен $a=1.5452\,\sigma$.

Начальные скорости атомов задавались случайно, так что, распределение атомов по скоростям соответствовало функции распределения Больцмана соответствующей температуре.

Для моделирования деформации сдвига в системе производилось постепенное сдвиговое деформирование МД-ячейки, при этом прямоугольный параллелепипед превращался в косоугольный



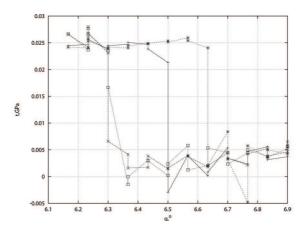

Рис. 1. Моделирование сдвига в МД-ячейке

(рис. 1), угол между стороной AB МД-ячейки и осью X есть угол сдвига γ . Для сохранения постоянного числа частиц в системе использовались периодические граничные условия вдоль осей ОY, ОZ и вдоль направления AB.

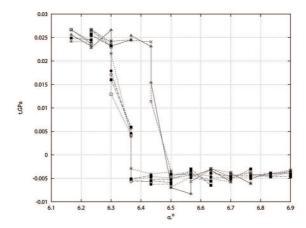
Угол сдвига γ изменялся дискретно с некоторым шагом, после чего производилось МД-моделирование системы в течение 1000 временных шагов, при этом система приводилась в состояние равновесия. Описанный процесс моделирует квазистатическую деформацию образца. Для поддержания постоянной температуры использовался метод перенормировки скоростей.

Было проведено моделирование квазистатической сдвиговой деформации по системе (111) $< 1\overline{10} >$ с одинаковым числом узловых плоскостей (1 $\overline{10}$) – $n_y = 24$ и (11 $\overline{2}$) – $n_z = 12$ и разным числом узловых плоскостей (111) – $n_x = 6, 9, 12$. При этом общее число атомов в МД-ячейке равнялось 864, 1296 и 1728 соответственно. Температура системы поддерживалась равной 12 К.

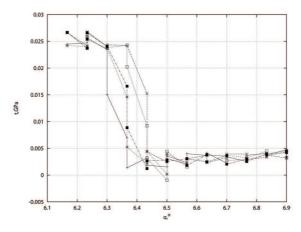
На рис. 2 приведена зависимость рассчитанного напряжения сдвига τ от угла сдвига γ , вычисления производились с шагом угла сдвига 1° . Из рис. 2 видно, что до критического угла $\gamma_{cr} \approx 7^{\circ}$ напряжение сдвига возрастает практически линейно, причем значения напряжений сдвига для систем с разным числом плоскостей (111) практически не отличается друг от друга. При достижении критического значения угла γ_{cr} происходит резкое уменьшение напряжения сдвига, практически до нуля.



Puc.~2. Зависимость напряжения au от угла сдвига γ для образцов с разным числом плоскостей (111): $1-n_x=6;~2-n_x=9;~3-n_x=12$


Для уточнения критического угла сдвига были проведены расчеты с шагом угла сдвига $\Delta\gamma=0.1^\circ$ в интервале углов от 6° до 8° . Результаты расчета представлены на рис. 3–5.

На рис. 3 представлены зависимости напряжения системы τ от угла сдвига γ . Видно, что существует область, где происходит резкое изменение значения напряжения τ .


Видно, что угол, при котором происходит резкое уменьшение напряжения, имеет разброс в интервале от 6.3° до 6.6° , причем с увеличением числа атомов этот разброс уменьшается. Так, в системе с 6 плотноупакованными плоскостями этот разброс составляет 0.3° , в системе с 9 плоскостями -0.2° , а в системе с 12 плоскостями -0.1° .

 $Puc.\ 3.\$ Зависимость напряжения от угла деформации для системы с 6 плоскостями

 $Puc.\ 4.\$ Зависимость напряжения от угла деформации для системы с 9 плоскостями

 $Puc.\ 5.\$ Зависимость напряжения от угла деформации для системы с 12 плоскостями

В работе был проведен анализ положений атомов узловых плоскостей. Было установлено, что в момент резкого уменьшения напряжения τ , в системах происходит атомная перестройка. В частности, возникают дефекты упаковки внедрения и вычитания.

Полученные результаты представлены в таблице:

Таблица 1

Порядок чередования плоскостей

Число плоскостей		Порядок чередования плоскостей
6	До деформации	АВСАВС
6	После деформации	АВСВАС
9	До деформации	ABCABCABC
9	После деформации	АВСВАСВАС
12	До деформации	A B C A B C A B C A B C
12	После деформации	ABCBCBCABABC

Видно, что для систем с 6 и 9 плоскостями имеет место простая замена слоев, а для системы с 12 плоскостями – дефект вычитания [3].

Выводы:

- 1. Разработан метод, позволяющий рассчитывать критическое значение угла деформации кр при касательном напряжении.
- 2. Показано, что при увеличении числа атомов, уменьшается интервал углов, при котором происходит падение напряжения.
- 3. Установлено, что при значении угла деформации больше, чем критический угол, в системе происходит перестройка атомных плоскостей и(или) появление дефектов упаковки.

Список литературы

- 1. Валуев А. А., Норман Г. Э., Подлипчук В. Ю. Метод молекулярной динамики: Теория и приложения. 1989. С. 5–40.
- 2. Калинин А. В., Рудер Д. Д. Исследование структурной перестройки ГЦК кристалла при деформации простого сдвига по системе скольжения (111) $< 1\overline{10} >$ методом компьютерного моделирования // Физика твердого тела, Материалы VII международной конференции (ВКГТУ, 2002). 2002. С. 264–266.
- 3. Хеерман Д. В. Методы компьютерного эксперимента в теоретической физике. М.: Наука, 1990. 295 с.
- 4. Malescio G. Intermolecular potencial past, present, future // Nature Materials. 2003. 2. P. 501.

Рукопись поступила в редакцию 12 мая 2011 г.