Article
Article name Detection of Ice 0 in Various Synthetic and Natural Environments
Authors Orlov A.O. Orlov_A_O@mail.ru
Bibliographic description Orlov A. O. Detection of Ice 0 in Various Synthetic and Natural Environments / / Scholarly Notes of Transbaikal State University. 2020. Vol. 15, No. 3. PP. 122-133. DOI: 10.21209/2658- 7114-2020-15-3-122-133.
Section
DOI 10.21209/2658-7114-2020-15-3-122-133
UDK 538.915, 538.956
Article type
Annotation Studies of a new modification of crystalline ice - ice 0, which can be formed only from supercooled water, have been performed. To do this, experiments were conducted with various porous media, artificial and natural, containing water in the pores of nanometer sizes. The dielectric parameters of the media, as well as some of their electrical properties, were measured. These include reflection coefficients of the radiation of moistened silicates at a frequency of 12, 4 GHz and absorption in pine branches and needles at a frequency of 5,3 GHz, dielectric loss tangent of silicate sorbents at frequencies from hundreds of hertz to hundreds of kHz, intrinsic electrical fluctuations in a frequency band of 1 Hz... 100 Hz and transmitting visible electromagnetic radiation through samples of transparent dielectrics with a thin layer of ice on their surface. The temperature range for different experiments reached values from +20 to -170 °C. An increase in the intensity of absorbed (scattered) radiation at a wavelength of 0, 52 gm was detected. Near the temperatures -20 ... — 24 °C, sharp changes were found in the parameters of moistened silicates and pine wood, which can be explained by the formation or destruction of ferroelectric ice 0. Two possible reasons for this behavior of the parameters during ice formation 0 are stated. This is the appearance of a highly conductive layer at the contact of ferroelectric ice with another dielectric, as well as the appearance of surface plasmons in this layer.
Key words ice 0, supercooled water, remote sensing, ferroelectricitv, electromagnetic properties
Article information
References 1. Bordonskij G. S., Gurulev A. A., Orlov A. O. Propuskanie elektromagnitnogo izlucheniva vidimogo diapazona tonkim sloem l’da 0, kondensirovannogo na dielektricheskuyu podlozhku / / Pis’ma v ZHETF. 2020. T. I l l , № 5. S. 311-315. 2. Bordonskij G. S., Gurulev A. A., Orlov A. O., Cvrenzhapov S. V. Variacii mikrovolnovvh poter’ v vetkah sosnv pri otricatel’nyh temperaturah / / Sovremennve problemv distancionnogo zondirovaniva Zemli iz kosmosa. 2018. T. 15, № 5. S. 120-129. 3. Bordonskij G. S., Orlov A. O. Issledovanie segnetoelektricheskih fazovvh perekhodov vodv v nanoporistvh silikatah pri sovmestnvh elektricheskih shumovvh i kalorimetricheskih izmerenivah / / Fizika tvvordogo tela. 2014. T. 56, vvp. 8. S. 1575-1582. 4. Bordonskij G. S., Orlov A. O. Priznaki vozniknoveniva l’da «0» v uvlazhnyonnvh nanoporistvh sredah pri elektromagnitnvh izmerenivah / / Pis’ma v ZHETF. 2017. T. 105, № 7-8. S. 483-488. 5. Boren K., Hafmen D. Pogloshchenie i rassevanie sveta malvmi chasticami. M.: Mir, 1986. 664 s. 6. Klimov V. V. Nanoplazmonika. M.: Fizmalit, 2009. 480 s. 7. Barsoukov E., Macdonald J. R. Impedance Spectroscopy: Theory, Experiment, and Applications. New York: Wiley, 2005. 608 p. 8. Castrillon S. R.-V., Giovambattista N., Arsav I. A., Debenedetti P. G. Evolution from surface-influenced to bulk-like dynamics in nanoscopicallv confined water / / J. of Phvs. Chem. B. 2009. Vol. 113. P. 7973-7976. 9. Cervenv S., Mallamace F., Swenson J., Vogel M., Xu L. Confined Water as Model of Supercooled Water / / Chem. Rev. 2016. Vol. 116, Is. 13. P. 7608-7625. 10. Chaplin M. Ice phases. URL: http://wwwl.lsbu.ac.Uk/water/ice_phases.html#computer (data obrashcheniva: 22.04.2020). Tekst: elektronnvj. 11. Colla E. V., Chao L. K., Weissman M. B. Barkhausen noise in a relaxor ferroelectric / / Physical Review Letters. 2002. Vol. 88, Is. 1. P. 17601-1/4. 12. Fukazawa H., Hoshikawa A., Ishii Y., Chakoumakos В. C., Fernandez-Baca J. A. Existence of Ferroelectric Ice in the Universe / / The Astrophvsical Journal. 2006. Vol. 652. No. 1. P. L57-L60. 13. Jiang Q., Liang L.H., Zhao M. Modelling of the melting temperature of nano-ice in MCM-41 pores / / J. of Physics: Condens. Matter. 2001. Vol. 13. № 20. P. L.397-L.401. 14. Korobeynikov S. M., Drozhzhin A. P., Furin G. G., Charalambakos V. P., Agoris D. P. Surface conductivity in liquid-solid interface due to image force / / Proceedings of 2002 IEEE 14th International Conference on Dielectric Liquids. ICDL. 2002. Vol. 2. P. 270-273. 15. Korobeynikov S. M., Melekhov A. V., Soloveitchik Yu. G., Rovak M. E., Agoris D. P., Pvrgioti E. Surface conductivity at the interface between ceramics and transformer oil / / Journal of Physics D: Applied Physics. 2005. Vol. 38, Is. 6. P. 915-921. 16. Mishima O., Stanley H. E. The relationship between liquid, supercooled and glassy water / / Nature. 1998. Vol. 396, Is. 6709. P. 329-335. 17. Quigley D., Alfe D., Slater В. Communication: On the stability of ice 0, ice i, and Ih / / The Journal of Chemical Physics. 2014. Vol. 141. P. 161102-1/5. 18. Russo J., Romano F., Tanaka H. New metastable form of ice and its role in the homogeneous crystallization of water / / Nature materials. 2014. Vol. 13. P. 733-793. 19. Schreiber A., Kotelsen I., Findenegv G.H. Melting and freezing of water in ordered mesoporous silica materials / / Phvs. Chem. Chem. Phvs. 2001. Vol. 3. P. 1185-1195. 20. Sellberg J. A., Huang C., McQueen T. A., Loh N. D., Laksmono H., Schlesinger D., Sierra R. G., Nordlund D., Hampton C. Y., Starodub D., Deponte D. P., Beye M.. Chen C., Martin A. V., Bartv A., Wikfeldt К. T., Weiss T. M.. Caronna C., Feldkamp J., Skinner L. B., Seibert M. M.. Messerschmidt M.. Williams G. J., Boutet S., Pettersson L. G. M.. Bogan M. J., Nilsson A. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature / / Nature. 2014. Vol. 510. No. 7505. P. 381-384. 21. Sharkov E. A. Passive Microwave Remote Sensing of the Earth: Physical Foundations. Berlin: Springer/PRAXIS, 2003. 613 p. 22. Slater B., Quigley D. Crystal nucleation: Zeroing in on ice / / Nature Materials. 2014. Vol. 13, No. 7. P. 670-671. 23. Solvevra E. G., Llave E., Scherlis D. A., Molinero V. Melting and Crystallization of Ice in Partially Filled Nanopores / / J. Phvs. Chem. B. 2011. Vol. 115, Is. 48. P. 14196-14204. 24. Webber B. Studies of nano-structured liquids in confined geometries and at surfaces / / Progress in Nuclear Magnetic Resonance Spectroscopy. 2010. Vol. 56, Is. 1. P. 78-93.
Full articleDetection of Ice 0 in Various Synthetic and Natural Environments