Article
Article name Modeling of Shock Deformed Polytetrafluoroethylene
Authors Voronin M.S.Postgraduate student of the Laboratory of High Velocity Processes mihause@academ.org
Merzhievsky , () L.A.Doctor of Physics and Mathematics, Professor of the Laboratory of High Velocity Processes merzh@hydro.nsc.ru
Bibliographic description
Section
DOI
UDK 539.3
Article type
Annotation A model of viscoelastic body of Maxwell’s type is developed to describe behavior of loaded polytetrafluoroethylene. The characteristic feature of the model are the defining relations: relaxation time of shear stresses and equation of state (EoS) with non-spherical deformations tensor. Relaxation time function is developed taking into account the fact that there are a number of thermo-fluctuating relaxation processes in polymers. The results of EoS calculations are also compared with available data of shock temperature. The model is used for simulating of propagation, interaction and reflection from a free surface of shock and unloading waves.
Key words polytetrafluoroethylene, teflon, equation of state, relaxation time, shockwave processes.
Article information
References 1. Merzhiyevsky L. A., Voronin M. S. Modelirovaniye udarno-volnovogo deformirovaniya polimetilmetakrilata // Fizika goreniya i vzryva. 2012. T. 48. № 2. S. 113–123. 2. Merzhiyevsky L. A., Resnyansky A. D. Chislennoye modelirovaniye udarno-volnovykh protsessov v metallakh // Fizika goreniya i vzryva. 1984. T. 20. № 5. S. 114–122. 3. Godunov S.K. Elementy mekhaniki sploshnoy sredy. M.: Nauka, 1978. 4. Zeldvich Ya. B., Rayzer Yu. P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavleny. M.: Fizmatgiz, 1963. 5. Zharkov V. N., Kalinin V. A. Uravneniya sostoyaniya tverdykh tel pri vysokikh davleniyakh i temperaturakh. M.: Nauka, 1968. 6. Glushak B. L., Gudarenko L. F., Styazhkin Yu. M. Poluempiricheskoye uravneniye sostoyaniya metallov s peremennoy teployemkostyu yader i elektronov // Voprosy atomnoy nauki i tekhniki. Seriya: Mat. Modelirovaniye fizich. protsessov. 1991. Vyp. 2. S. 57–62. 7. Bordzilovsky S. A., Karakhanov S. M., Bordzilovsky D. S. Primeneniye opticheskogo pirometra dlya izmereniya temperatury udarnogo szhatiya ftoroplasta // Fizika goreniya i vzryva. 2010. T. 46, № 1. S. 93–101. 8. Lau S. K., Suzuki H., Wunderlich B. The thermodynamic properties of polytetrafluoroethylene // J. of Polymer Sci.: Polymer Physics Edition. 1984. V. 22. № 5. P. 379–405. 9. Morris C. E., Fritz J. N., McQueen R. G. The equation of state of polytetrafluoroethylene to 80 GPa // J. Chem. Phys. 1984. V. 80. № 10 P. 5203–5218. 10. URL: http://www.ficp.ac.ru/rusbank/ (data obrashcheniya: 10.03.2013). 11. Bushman A. V. Issledovaniye pleksiglasa i teflona v volnakh povtornogo udarnogo szhatiya i izentropicheskoy razgruzki. Uravneniye sostoyaniya polimerov pri vysokikh plotnostyakh energii /A. V. Bushman, M. V. Zhernokletov, I. V. Lomonosov, Yu. N. Sutulov, V. Ye. Fortov, K. V. Khishchenkо // Doklady Аkademii nauk. 1993. T. 329. № 5 S. 581–584. 12. Kozlov G. V., Sanditov D. S. Angarmonicheskiye effekty i fiziko-mekhanicheskiye svoystva polimerov. Novosibirsk.: Nauka, 1994. 13. Bershteyn V. A., Yegorov V. M., Yemelyanov Yu. A. Vzaimosvyaz osnovnykh relaksatsionnykh perekhodov v polimerakh // Vysokomolekulyarnye soyedineniya. 1985. T. (A) XXVII, № 11 S. 2451-2456. 14. Merzhiyevsky L. A., Shamonin S. A. Postroyeniye zavisimosti vremeni relaksatsii kasatelnykh napryazheny ot parametrov sostoyaniya sredy // PMTF. 1980. № 5. S. 170–179. 15. Rae P. J., Dattelbaum D. M. The properties of poly(tetrafluoroethylene) (PTFE) in compression // Polymer. 2004. V. 45. P. 7615–7625. 16. Bourne N. K., Gray III G. T. Dynamic response of binders; teflon, estane™and Kel- F-800™// J. App. Phys. 2005. V. 98. P. 123503 (1–9). 17. Bordzilovsky S. A., Karakhanov S. M. Rasprostraneniye impulsa napryazheniya po udarno-szhatomu ftoroplastu // Fizika goreniya i vzryva. 1992. № 3. S. 118–119. 18. Karakhanov S. M., Bordzilovsky S. A. Dinamicheskoye povedeniye politetraftoretilena v volnakh szhatiya i razgruzki // Fizika goreniya i vzryva. 2000. T. 36. № 5. S. 109–118.
Full articleModeling of Shock Deformed Polytetrafluoroethylene