Article
Article name Properties of Supercooled Water at a Temperature Below −40◦ C
Authors Orlov A.O. Orlov_A_O@mail.ru
Bordonsky G.S.Doctor of Physics and Mathematics, the Chief of the Laboratory of Cryogenesis Geophysics lgc255@mail.ru
Bibliographic description
Section
DOI
UDK 537.915
Article type
Annotation The experimental investigation of supercooled water in nanoporous silica at the temperatures down to −140◦ C was carried out. Nanoporous silica MCM-41 with 3.5 nm diameter cylindrical pores and SBA-15 (8.5 nm pores) were investigated using the methods of dielectric spectroscopy and measuring proper electrical fluctuations at low frequencies. Occurrence of non-linear media properties at the temperature below −40◦ C was found, which was revealed in the form of the registered cell capacity dependence on voltage amplitude in it, as well as noise increase. The effect observed is supposed to be related to the earlier predicted ferroelectric phase transition close to −40◦ C.
Key words nanopores, dielectric spectroscopy, phase transition.
Article information
References 1. Bordonsky G. S., Orlov A O. Izucheniye mezostrukturirovannogo silikata MSM- 41 metodom nizkochastotnoy dielektricheskoy spektroskopii // Kondensirovaniye sredy i mezhfaznye granitsy. 2011. T. 13. № 1. S. 5-12. 2. Fedichev P. O., Menshikov L. I., Bordonskiy G. S., Orlov A. O. Experimental evidence of the ferroelectric nature of the λ-point transition in liquid water // Письма в журнал экспериментальной и теоретической физики. 2011. Т. 94. Вып. 5–6. С. 433–437. 3.Menshikov L. I., Fedichev P. O. Vozmozhnoye sushchestvovaniye segnetoelektricheskogo sostoyaniya pereokhlazhdeniya vyody // Zhurnal fizicheskoy khimii. 2011. T. 85. № 5. S. 996– 998. 4. Bednyakov P. S. Issledovaniye dielektricheskikh svoystv segentoelektricheskikh kristallov i tonkikh plenok tuplovykh shumov: kand. dis. 2011. M.: MGU. 136 s. 5. Schreiber A., Kotelsen I., Findenegy G.H. Melting and freezing of water in ordered mesoporous silica materials // Phys. Chem. Chem. Phys. 2001. V. 3. P. 1185–1195. 6. Limmer D. T., Chandler D. Phase diagram of supercooled water confined to hydrophilic nanopores // J. Chem. Phys. 2012. V. 137. p. 044509/11. 7. Stanley H. E., Buldyrev S. V., Franzese G., Halvin S. et.al. Correlated randomness and switching phenomena // Physica A. Stat. Mech. Applic. 2010. V. 389. P. 2880–2893. 8. Fechichev P. O., Menshikov L. I. How does confinement in nano-scale pores change the thermodynamic properties and the nature of phase transitions of water? Preprint arXiv: 1206.3470 [cond-mat.soft] 15 Jan 2012. 3p. 9. Castrillon S. R.-V., Giovambattista N., Arsay I. A., Debenedetti P. G. Evolution from surface-influenced to bulk-like dynamics in nanoscopically confined water // J. of Phys. Chem. B. 2009. V. 113. P. 7973–7976. 10. Jazdzewska M., Sliwinska-Bartkowiak M. M., Beskrovnyy A. I., Vasiloskiy S.G. et.al. Novel ice structures in carbon nanopores: pressure enhancement effect of confinement // Phys. Chem. Chem. Phys. 2011. V. 13. P. 9008–9013. 11. Parfenov V. A., Kirik S. D. Polucheniye mezostrukturirovannykh silikatnykh materialov s kontroliluruyemymi razmerаmi v prisutstvii tsetildimetilamina // Trudy V Staroverovskikh chteny. Ultrodispersionnye poroshki, nanostruktury, materialy: polucheniye, svoystva, primeneniye. 2009. Krasnoyarsk. S. 318–322. 12. Musevic I., Kityk A., Skarabot M., Blinc R. Polarization noise in a ferroelectric liquid crystal // Phys. Rev. Lett. 1997. V. 79. No 6. P. 1062–1065.
Full articleProperties of Supercooled Water at a Temperature Below −40◦ C