Article
Article name On the Solution of Boundary Value Problems for the Poisson Equation in Piecewise Homogeneous Domains Bounded by Parabolas
Authors Kholodova S.N. Candidate of Pedagogy, taravna@mail.ru
Bibliographic description Kholodovskii S. Ye. On the Solution of Boundary Value Problems for the Poisson Equation in Piecewise Homogeneous Domains Bounded by Parabolas // Scholarly Notes of Transbaikal State University. Series Physics, Mathematics, Engineering, Technology. 2018. Vol. 13, No. 4. PP. 33-41. DOI: 10.21209/2308-8761-2018-13-4-33-41.
Section PROBLEMS OF MATHEMATICAL PHYSICS. ANALYTICAL METHODS
UDK 517.956
DOI 10.21209/2308-8761-2018-13-4-33-41
Article type
Annotation The boundary value problems for the Poisson equation in piecewise homogeneous unbounded and bounded domains with parabolic boundaries are considered. Using the method of convolution of Fourier expansions, we derive formulas expressing solutions of the problems through solutions of classical problems in a homogeneous half-plane or half-strip. Fundamental solutions are constructed in piecewise homogeneous domains with parabolic boundaries in explicit form without quadratures.
Key words boundary value problems in domains with curvilinear faces, conjugation conditions, method of convolution of Fourier expansions
Article information
References 1. Arsenin V. Ya. Metody matematicheskoi fiziki i spetsial’nye funktsii. M.: Nauka, 1974. 432 s. 2. Blatov I. A., Kitaeva E. V. О sochetanii metodov nepolnoi faktorizatsii i bystrogo preobrazovaniya Fur’e resheniya kraevykh zadach dlya uravneniya Puassona v oblastyakh s krivolineinoi granitsei // Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki. 2003. T. 43, № 5. S. 730-743. 3. Vorozhtsov E. V., Shapeev V. P. Chislennoe reshenie uravneniya Puassona v polyarnykh koordinatakh metodom kollokatsii i naimen’shikh nevyazok // Modelirovanie i analiz informatsionnykh sistem. 2015. T. 22, № 5. S. 648-664. 4. Efimova I. A. О reshenii pervoi kraevoi zadachi na ploskosti dlya uravneniya Laplasa v oblasti, ogranichennoi paraboloi // Uchenye zapiski Zabaikal’skogo gosudarstvennogo gumanitarno-pedagogicheskogo universiteta. 2013. № 3. S. 29-31. 5. Ignat’eva N. V. О reshenii pervoi kraevoi zadachi dlya uravneniya Laplasa v kusochno- odnorodnykh krivolineinykh oblastyakh // Matematicheskii analiz i ego prilozheniya. 2010. № 9. S. 16-20. 6. Trubnikov S. V. О novykh chislennykh metodakh resheniya kraevykh zadach v oblastyakh slozhnoi formy s tablichno zadannymi iskhodnymi dannymi // Vestnik Bryanskogo gosudarstvennogo universiteta. 2015. № 2. S. 432-437. 7. Kholodovskii S. E. Metod svertyvaniya razlozhenii Fur’e. Sluchai obobshchennykh uslovii sopryazheniya tipa treshchiny (zavesy) v kusochno-neodnorodnykh sredakh // Differentsial’nye uravneniya. 2009. T. 45, № 6. S. 855-859. (Kholodovskii S. E. The Convolution Method of Fourier Expansions. The Case of Generalized Transmission Conditions of Crack (Screen) Type in Piecewise Inhomogeneous Media // Differential Equations. 2009. Vol. 45, No. 6. Pp. 873-877). 8. Kholodovskii S. Е. Metod svertyvaniya razlozhenii Fur’e. Sluchai treshchiny (zavesy) v neodnorodnom prostranstve // Differentsial’nye uravneniya. 2009. T. 45, № 8. S. 1204-1208. (Kholodovskii S. E. The Convolution Method of Fourier Expansions. The Case of a Crack (Screen) in an Inhomogeneous Space // Differential Equations. 2009. Vol. 45, No. 8. Pp. 1229-1233). 9. Chernyshov A. D. Reshenie statsionarnykh zadach teploprovodnosti dlya krivolineinykh oblastei s pomoshch’yu razlozhenii po sobstvennym funktsiyam (fundamental’nye resheniya) // Inzhenerno-fizicheskii zhurnal. 2009. T. 82, № 1. S. 163-169.
Full articleOn the Solution of Boundary Value Problems for the Poisson Equation in Piecewise Homogeneous Domains Bounded by Parabolas