Article
Article name Study of Ferroelectric Ice Formation in Nanostructures of Vegetable Tissues by Using the Method of Electrical Fluctuations Measurement
Authors Bordonsky G.S.Doctor of Physics and Mathematics, the Chief of the Laboratory of Cryogenesis Geophysics lgc255@mail.ru
Bibliographic description Bordonskiy G. S. Study of Ferroelectric Ice Formation in Nanostructures of Vegetable Tissues by Using the Method of Electrical Fluctuations Measurement // Scholarly Notes Of Transbaikal State University. Series Physics, Mathematics, Engineering, Technology. 2016. Vol. 11, No 4. P. 69-76. DOI:10.21209/2308-8761-2016-11-4-69-76.
Section
DOI 10.21209/2308-8761-2016-11-4-69-76
UDK 537.226.4
Article type
Annotation The paper suggests the method for search of the ferroelectric state of water and ice XI in nanostructures of biological tissues by using low frequency electrical fluctuations measurement. Ferroelectric ice XI was detected at temperatures from -223 °C to -245 °C for volume ice. It is proposed in the paper that ice XI may also be formed at significantly high temperatures in earth conditions in nanoporous space of cooled biological objects. The electrical noises at 1 + 100 Hz (Barkgauzennoise) incooling-heating cycle of a wood of pine and other different porous media and temperature interval from +20 + 150 °C were investigated. The expressed noise hysteresis as a function of the temperature was observed at nanoporous silicate SBA- 15, which has long pores. Other wet nanoporous media indicate changeability of electrical fluctuation from the temperature. Thus, it is found that the method of low frequency electrical noise measurement allows us to detect a small concentrations of the ferroelectric water phase in nanoporous structures. The existence of this phase of water would significantly influence biochemical processes at the temperatures below 0 °C.
Key words ferroelectric ice XI, electrical noise, nanoporous media, pine wood
Article information
References I. Zhmakin A.I. Fizicheskie osnovy kriobiologii // Uspekhi fizicheskikh nauk. 2008. T. 178, № 3. S. 243-266. 2 Franks F. (red.) Voda i vodnye rastvory pri temperaturakh nizhe 0 °C. Kiev: Naukova dumka, 1985. 388 s. 3. Limmer D. M., Chandler D. Phase diagram of supercoold water confined to hydrophilic nanopores // J. Chem. Phys, 2012. Vol. 137. P. 044509/11. 4. Macelloni G., Brogioni M., Pettinato S., et.al. Ground-based L-band emission measurements at Dome-C Antarctica: The DOMEX-2 experiment // IEEE Trans. Geosc. Remote Sens, 2013. Vol. 51, No. 9. P. 4718-4730. 5. Johary G.P. Thermal relaxation of water due to interfacial processes and phase equilibria in 1.8 nm pores of NCM-41 // Thermochimica Acta, 2009. Vol. 492. P. 2936. 6. Chaplin M. http//www. lsbu.sc.uk/water/chaplin.html. 7. Kirov M.V. Protonnaya uporyadochennost’ geksagonal’nogo l’da // Zhurnal strukturnoi khimii. 1996. T. 37, № 2. S. 173-176. 8. Maeno M. Nauka o l’de. M.: Mir, 1988. 230 s. 9. Fukazavwa H., Mae S., Ikeda S., Watanabe O. Proton ordering in Antarctic ice observed by Raman and neutron scattering // Chemical Physics Letters, 1998. Vol. 294, Iss. 6. P. 554-558. 10. Fortes A.D., Wood I.G., Grigoriev D., Alfredsson M., Kipfstuhl. S., Knight K.S., Smith R.I. No evidence for large-scale proton ordering in Antarctic ice from powder neutron diffraction // J. Chem. Phys, 2004. Vol. 120. P. 376-379. II. Bordonskii G. S., Orlov A. O. Issledovanie segnetoelektricheskikh fazovykh perekhodov vody v nanoporistykh silikatakh pri sovmestnykh elektricheskikh shumovykh i kalorimetricheskikh izmereniyakh // Fizika tverdogo tela. 2014. T. 56, № 8. S. 1575-1582. 12. Schreiber A., Kotelsen I., Findenrgy G.H. Melting and freezing of water in ordered mesoporous silica materials // Phys. Chem. Chem. Phys, 2001. Vol. 3. P. 1185-1195. 13. Men’shikov L. I., Fedichev P. O. Vozmozhnoe sushchestvovanie segnetoelektricheskogo sostoyaniya pereokhlazhdennoi vody // Zhurnal fizicheskoi khimii. 2011. T. 85, № 5. S. 996-998. 14. Fedichev P. O., Menshikov L. I., Bordonskiy G. S., Orlov A. O. Experimental evidence of the ferroelectric nature of the А-point transition in liquid water // J. of Experimental and Theoretical Physics Letters, 2011. Т. 94, № 5. С. 401-405. 15. Kresge C. T., Leonowicz M. Z., Roth W. J., Vartuli J. C., Beck J. S. Odered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism // Letters to Nature, 1992. Vol. 359. P. 710-712.
Full articleStudy of Ferroelectric Ice Formation in Nanostructures of Vegetable Tissues by Using the Method of Electrical Fluctuations Measurement