Article
Article name Methods of Measuring the Real Part of Supercooled Water Relative Dielectric Constant at Microwaves
Authors Bordonsky G.S.Doctor of Physics and Mathematics, the Chief of the Laboratory of Cryogenesis Geophysics lgc255@mail.ru
Bibliographic description Bordonskiy G. S. Methods of Measuring the Real Part of Supercooled Water Relative Dielectric Constant at Microwaves // Scholarly Notes of Transbaikal State University. 2019. Vol. 14, No. 3. PP. 58-65. DOI: 10.21209/2308-8761-2019-14-3-58-65.
Section
DOI
UDK 537.874
Article type
Annotation The dielectric characteristics of supercooled water are required for solving problems of microwave remote sensing of the natural environment. At present, there are no measurements of the real part of the relative dielectric constant for temperatures below -18 °C. The paper proposes a method for measuring the real part of relative dielectric constant using waveguide resonators. A dispersed humidified medium with nanometer-sized pores is placed in the resonator to achieve a deep supercooling of water. To eliminate the influence of medium inhomogeneities caused by moisture migration during its freezing and manifestation of distortions of resonant curves, it is proposed to use waveguide resonators of increased sizes. In this case, due to averaging of the properties of the medium over the cavity volume, oscillation is smoothed on the resonance transmission curves of the resonator and the effect of inhomogeneities on the results of determining the resonance parameters is eliminated. In the performed experiment, a rectangular resonator with a length equal to the wavelength in the waveguide, corresponding to the cross section, was used. Compared with the half-wave resonator, it was possible to obtain significantly better form of resonant curve and determine the shift of the resonant frequency with decreasing temperature of the humid medium. Possible errors in the recovery of the dielectric characteristics of supercooled water are given, which should be taken into account in the measurements. It is supposed to achieve an accuracy of measuring the real part of the dielectric constant of about ten percent at centimeter wavelength range for temperatures from -20 to -60 °C.
Key words supercooled water, dielectric constant, microwaves, nanoporous medium, resonator measurements
Article information
References 1. Bordonskij G. S., Orlov A. O., Krylov S. D. Izuchenie faktora poter’ pereohlazhdyonnoj porovoj vody na chastotah 60... 140 GGc // Radiotekhnika i elektronika. 2019. T. 64, № 4. S. 350-355. 2. Bordonskij G. S., Orlov A. O., Hapin YU. B. Koefficient zatuhaniya i dielektricheskaya pronicaemost’ pereohlazhdyonnoj obnyomnoj vody v intervale temperatur 0... — 90 °C na chastotah 11... 140 GGc // Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. 2017. T. 14, № 3. S. 255-270. 3. Bordonskij G. S., Filippova T. G. Vliyanie perkolyacii na dielektricheskie svojstva myorzlyh dispersnyh sred // Kondensirovannye sredy i mezhfaznye granicy. 2002. T. 4, № 1. S. 21-26. 4. Gurulev A. A. Rezonatornye issledovaniya presnogo l’da na chastote 3.3 GGc // Uchyonye zapiski Zabajkal’skogo gosudarstvennogo gumanitarno-pedagogicheskogo universiteta im. N. G. Chernyshevskogo. 2009. № 2. S. 131-133. 5. Kutuza B. G., Danilychev M. V., YAkovlev O. I. Sputnikovyj monitoring Zemli: Mikrovolnovaya radiometriya atmosfery i poverhnosti. M.: LENAND, 2016. 336 s. 6. Orlov A. O. Mikrovolnovye svojstva pereohlazhdyonnoj porovoj vody na chastotah 11 ^ 140 GGc: dis. ... kand. fiz.-mat. nauk: 01.04.03. M., 2017. 164 s. 7. Semenov N. A. Tekhnicheskaya elektrodinamika. M.: Svyaz’, 1973. 480 s. 8. Sharkov E. A. Radioteplovoe distancionnoe zondirovanie Zemli: fizicheskie osnovy: v 2 t. T. 1. M.: IKI RAN, 2014. 544 s. 9. Bertolini D., Cassettari M., Salvetti G. The dielectric relaxation time of supercooled water // J. Chem. Phys. 1982. Vol. 76, is. 6. P. 3285-3290. 10. Ellison W. J. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0-25 THz and the temperature range 0-100 °C // J. Chem. Phys. Ref. Data. 2007. Vol. 36, No. 1. P. 1-18. 11. Limmer D. T., Chandler D. Phase diagram of supercooled water confined to hydrophilic nanopores // J. Chem. Phys. 2012. Vol. 137, is. 4. P. 1841-1844. 12. Rosenkranz P. W. A Model for the complex dielectric constant of supercooled liquid water at microwave frequencies // IEEE Transactions on Geoscience and Remote Sensing. 2015. Vol. 53, is. 3. P. 1387-1393.
Full articleMethods of Measuring the Real Part of Supercooled Water Relative Dielectric Constant at Microwaves